首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A personal dosimetry system is required to measure the personal dose equivalent accurately in a wide range of radiation fields. However, the dose evaluation algorithm at the Korea Atomic Energy Research Institute (KAERI) has been developed with the spectral X ray fields described in the American National Standards Institute (ANSI) Standard N13.11 and the actual fields to be monitored may be significantly different from these. To evaluate the dose more accurately when workers are exposed to non-ANSI N13.11 radiation fields, a dose evaluation algorithm using monochromatic radiation (monochromatic algorithm) was developed using the experimental data of the energy responses of CaSO4:Dy thermoluminescent materials irradiated by monochromatic fluorescent X ray fields recently established at KAERI; this was compared with another algorithm developed on the basis of the ANSI N13.11 continuous spectrum X ray fields (spectrum algorithm). The paper concludes with discussions about some results of the algorithm test, including mixed field irradiation and angular response, conducted in an International Atomic Energy Authority/Regional Cooperation of Asia (IAEA/RCA) intercomparison study.  相似文献   

2.
Though mammography is one of the most sensitive methods to detect breast cancer, the benefit of the mammography screening programmes is still not clearly proven. One of the reasons is the radiation dose delivered by the examinations. Simulations of the radiation transport based on realistic breast phantoms are a useful tool to estimate the dose for the risk relevant parenchymal tissue. Specimens of real breasts have been fixated using a specially designed process while being compressed as in mammography. They have been scanned using the high-resolution mode of a CT. A segmentation has been carried out by assigning the voxels to different tissues. The resulting voxel phantom allows the assessment of tissue doses by Monte-Carlo calculations and can be used to simulate the diagnostic outcome of different imaging procedures. Three different tissues were separated: skin, adipose and 'breast tissue'. This allows reasonable calculations of the average glandular doses in mammography.  相似文献   

3.
Microdosimetric characteristics of 28 kVp mammography X ray spectra were studied for several target/added filtration combinations (Mo/Mo, Rh/Rh, Rh/Al, W/Rh, Mo/Rh). Monte Carlo techniques were used to model X ray production from mammography units and to calculate distributions of absorbed dose and energy imparted in breast tissue. The results show that the dose averaged lineal energy is about 5.0 keV.micron-1, about 25% higher than for general diagnostic imaging X ray spectra. Significant differences in lineal energy between the five X ray qualities were noted, with the highest value for the commonly used Mo/Mo combination. Spectral hardening with depth in the tissues causes a 5% decrease in lineal energy over 5 cm. No significant differences were found for the different tissue compositions.  相似文献   

4.
For 8 voxel models of a compressed breast (4-7 cm thickness and two orientations for each thickness) and 14 radiation qualities commonly used in mammography (HVL 0.28-0.50 mm Al), tissue dose conversion coefficients were calculated for a focus-to-film distance of 60 cm using Monte Carlo methods. The voxel models were segmented from a high-resolution (slice thickness of 1 mm) computed tomography data set of an ablated breast specimen fixated while being compressed. The contents of glandular tissues amounted to 2.6%, and were asymmetrically distributed with regard to the midplane of the model. The calculated tissue dose conversion coefficients were compared with the recent literature values. These earlier tissue dose conversion coefficients were also calculated using Monte Carlo methods and breast models of various thickness, but these consist of homogeneous mixtures of glandular and adipose tissues embedded in 5 mm pure adipose tissue both at the entrance and exit sides. The results show that the new glandular tissue dose conversion coefficients agree well with the literature values for those cases where the glandular tissue is predominantly concentrated in the upper part of the model. In the opposite case, they were lower by up to 40%. These findings reveal a basic problem in patient dosimetry for mammography: glandular dose is not only governed by the average breast composition, which could be derived from the breast thickness, but also by the local distribution of glandular tissue within the breast, which is not known.  相似文献   

5.
The mean glandular doses to samples of women attending for mammographic screening are measured routinely at screening centres in Israel. As at present, no detailed and systematic data have been collected regarding the average glandular dose in mammography screening procedures carried out in Israel for the last 20 y. Especially data are lacking related to the glandular dose (GD) involved in mammography with the new digital mammography systems. In this work, partial results of the measurements are presented to asses the radiation dose to the breast and to the glandular tissue within the Israeli national mammography programme updated to year 2009.  相似文献   

6.
Absorbed tissue dose measurements are carried out for high-energy photon beams using CaSO4:Dy thermo-luminescence dosemeter (TLD) badge and the results are also verified using ionisation chamber used in radiation therapy. The photon beams generated using linear accelerator at 6 and 18 MV photon beam energies have been used and the absorbed doses are measured at the surface as well as at various depths. It has been found that the depth at which maximum dose is delivered increases with the increase in photon energy and the depth of maximum absorbed dose in tissue occurs beyond 10 mm. It has also been found that the evaluation of the absorbed dose (or Hp(10) as well) using thermoluminescence readout of disc D1 clearly shows that the current TLD badge provides a reasonable estimate of the effective dose for photon fields from 6 to 18 MV linacs for anterior-posterior incidence. The paper also provides information regarding the misinterpretation of radiation pattern in multi-element/filter TLD badge.  相似文献   

7.
For more than 50 years the quantity absorbed dose has been the basic physical quantity in the medical applications of ionising radiation as well as radiological protection against harm from ionising radiation. In radiotherapy relatively high doses are applied (to a part of the human body) within a short period and the absorbed dose is mainly correlated with deterministic effects such as cell killing and tissue damage. In contrast, in radiological protection one is dealing with low doses and low dose rates and long-term stochastic effects in tissue such as cancer induction. The dose quantity (absorbed dose) is considered to be correlated with the probability of cancer incidence and thus risk induced by exposure. ICRP has developed specific dosimetric quantities for radiological protection that allow the extent of exposure to ionising radiation from whole and partial body external radiation as well as from intakes of radionuclides to be taken into account by one quantity. Moreover, radiological protection quantities are designed to provide a correlation with risk of radiation induced cancer. In addition, operational dose quantities have been defined for use in measurements of external radiation exposure and practical applications. The paper describes the concept and considerations underlying the actual system of dose quantities, and discusses the advantage as well as the limitations of applicability of such a system. For example, absorbed dose is a non-stochastic quantity defined at any point in matter. All dose quantities in use are based on an averaging procedure. Stochastic effects and microscopic biological and energy deposition structures are not considered in the definition. Absorbed dose is correlated to the initial very short phase of the radiation interaction with tissue while the radiation induced biological reactions of the tissue may last for minutes or hours or even longer. There are many parameters other than absorbed dose that influence the process of cancer induction, which may influence the consideration of cells and/or tissues at risk which are most important for radiological protection.  相似文献   

8.
通过对典型工业γ射线探伤室周围的现场监测,将探伤室周围的辐射吸收空气剂量率与GBZ132-2008中规定的剂量限值进行比较,进行了固定式γ射线探伤辐射防护措施的可行性分析。同时通过理论计算得到了使用放射源探伤时无防护措施可能造成的超大辐射剂量照射数据,有效印证了进行有效硬件防护以及与软件措施相结合,就能够在γ射线探伤实践中保护环境和从业人员的安全,同时也为管理部门提供技术支持。  相似文献   

9.
An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO33− radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO33− radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.  相似文献   

10.
For over a hundred years, X‐rays have been a main component of the radiotherapeutic approaches to treat cancer. Yet, to date, no radiosensitizer has been developed to selectively target prostate cancer. Gold has excellent X‐ray absorptivity and is used as a radiotherapy enhancing material. In this work, ultrasmall Au25 nanoclusters (NCs) are developed for selective prostate cancer targeting, radiotherapy enhancement, and rapid clearance from the body. Targeted‐Au25 NCs are rapidly and selectively taken up by prostate cancer in vitro and in vivo and also have fast renal clearance. When combined with X‐ray irradiation of the targeted cancer tissues, radiotherapy is significantly enhanced. The selective targeting and rapid clearance of the nanoclusters may allow reductions in radiation dose, decreasing exposure to healthy tissue and making them highly attractive for clinical translation.  相似文献   

11.
The absorbed dose outside of the direct fields of radiotherapy treatment (or peripheral dose, PD) is responsible for radiation exposure of the fetus in pregnant women. Because the radiological protection of the unborn child is of particular concern in the early period of the pregnancy, the aim of this study is to estimate the PD in order to assess the absorbed dose in the uterus in a pregnant patient irradiated for breast carcinoma therapy. The treatment was simulated on an Alderson-Rando anthropomorphic phantom, and the radiation dose to the fetus was measured using an ionisation chamber and thermoluminescence dosemeters. Two similar treatments plans with and without wedges were delivered, using a 6 MV photon beam with two isocentric opposite tangential fields with a total dose of 50 Gy, in accordance with common established procedures. Average field parameters for more than 300 patients were studied. Measurements showed the fetal dose to be slightly lower than 50 mGy, a level at which the risk to the fetus is uncertain, although several authors consider this value as the dose threshold for deterministic effects. The planning system (PS) underestimated PD values and no significant influence was found with the use of wedge filters.  相似文献   

12.
Low-cost, commercially available phototransistor-type semiconductor devices have been tested for monitoring filtered X ray beam dose. A Pantak X-ray unit was used to generate aluminium filtered X ray beams from 60 to 120 kV potentials. The analysis of the radiation detection behaviour as a function of the X ray tube parameters (peak kilovoltage and electrical current) are presented. The changes of the phototransistor electronic parameters have been evaluated and the results indicate that phototransistors can be used as X ray detectors for dose estimation in two different ways: electrical current read-out from 1 to 100 mGy dose range, and the changing of the radiation detection sensitivity in the dose range from 0.1 to 100 Gy. In addition, the devices show high reliability with no sign of substantial performance degradation with use and, in certain dose ranges, the cumulative dose evaluations could be performed up to 10,000 times with no need for re-calibration.  相似文献   

13.
Entrance surface doses (ESDs) were measured for the most common types of X ray procedures, such as chest PA, lumber spine AP, lumber spine lateral, skull AP, skull lateral and pelvis AP in four major hospitals of Dhaka, the capital city of Bangladesh. Organ/tissue doses for 29 organs/tissues and effective doses for the patients were also calculated using the entrance surface dose as the input quantity. Organ/tissue doses and effective doses were calculated by using XDOSE software based on the Monte Carlo computation method. It was observed that the fluctuation of the entrance surface dose was too large. The ratio of maximum and minimum ESD values ranged from 4.8 to 35.9. Consequently, variation of organ doses was large even in the same type of X ray examination and in the same facility. Mean effective doses for the above mentioned X ray procedures were also determined and compared with the effective doses of some other countries. In most cases effective doses measured for the different types of X ray procedures were found to be lower than the effective doses of some other countries.  相似文献   

14.
Quantifying organ dose to healthy organs during radiotherapy is essential to estimate the radiation risk. Dose factors are generated by simulating radiation transport through an anthropomorphic mathematical phantom representing a reference Indian adult using the Monte Carlo method. The mean organ dose factors (in mGy min(-1) GBq(-1)) are obtained considering the microselectron (192)Ir source and BEBIG (60)Co sources in the uterus of a reference Indian adult female phantom. The present study provides the factors for mean absorbed dose to organs applicable to the Indian female patient population undergoing brachytherapy treatment of uterus cancer. This study also includes a comparison of the dimension of organs in the phantom model with measured values of organs in the various investigated patients.  相似文献   

15.
As the survival rate of newborns has increased, the number of X ray computed tomography (CT) examinations performed on neonates has been increasing. The exposure doses from CT examinations are known to be higher than those from conventional radiography. Although radiation sensitivity of neonates is higher than that of adults, there are few reports on dose estimates of neonates in CT examinations. Four cylindrical phantoms and one neonatal phantom have been developed to estimate doses to neonates during CT examinations. Using these phantoms and glass dosemeters, absorbed doses were measured. Estimated exposure doses to neonates were higher than those to adults, and our results suggest a need to optimise carefully CT examinations in newborns.  相似文献   

16.
Measurements of absorbed doses from radiographic examinations to various anatomical sites in the head and neck of patients with an average age of 45 years using intra-oral dental radiography have been carried out. LiF (TLD-100) dosemeters were used for the measurements of the absorbed dose. The measured absorbed doses to the various anatomical sites in the two units are reported, discussed and compared with results from the literature. Quality control measurements were also performed using a Victoreen quality control test device on the X ray units. The tube voltage accuracies for the two units were found to be within acceptable limits (less than +/- 10%). On the other hand the exposure time accuracies for these units have large deviations (>20%). These results and those that have been reported in the literature may be an indication that high patient doses are common in most dental X ray centres and countries. As a result of this, regular compliance and performance checks of dental diagnostic X ray equipment are essential in order to ensure proper performance and to minimise unnecessary patient and operator doses.  相似文献   

17.
The Sectra MicroDose Mammography system is based on direct photon counting (with a solid-state detector), and a substantially lower dose to the breast than when using conventional systems can be expected. In this work absorbed dose measurements have been performed for the first unit used in routine mammography screening (at the Hospital of Helsingborg, Sweden). Two European protocols on dosimetry in mammography have been followed. Measurement of half value layer (HVL) cannot be performed as prescribed, but this study has demonstrated that non-invasive measurements of HVL can be performed accurately with a sensitive and well collimated solid-state detector with simultaneous correction for the energy dependence. The average glandular dose for a 50 mm standard breast with 50% glandularity, simulated by 45 mm polymethylmethacrylate, was found to be 0.21 and 0.28 mGy in March and December 2004, respectively. These values are much lower than for any other mammography system on the market today. It has to be stressed that the measurements were made using the current clinical settings and that no systematic optimisation of the relationship between absorbed dose and diagnostic image quality has been performed within the present study. In order to further increase the accuracy of absorbed dose measurements for this unit, the existing dose protocols should be revised to account also for the tungsten/aluminium anode/filter combination, the multi-slit pre-collimator device and the occurrence of a dose profile in the scanning direction.  相似文献   

18.
Advances in the biotechnology of cell specific targeting of cancer and the increased number of clinical trials involving treatment of cancer patients with radiolabelled antibodies, peptides and similar delivery vehicles have led to an increase in the number of high dose radionuclide therapy procedures. Optimised radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be the lungs, liver, intestinal tract or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential timepoints using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organ tissues of concern, for the whole body and sometimes for selected tumours. Patient specific factors often require that dose estimates be customised for each patient. In the United States, the Food and Drug Administration regulates the experimental use of investigational new drugs and requires 'reasonable calculation of radiation absorbed dose to the whole body and to critical organs' using the methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high dose studies shows that some are conducted with minimal dosimetry, that the marrow dose is difficult to establish and is subject to large uncertainties. Despite the general availability of software, internal dosimetry methods often seem to be inconsistent from one clinical centre to another.  相似文献   

19.
The purpose of this study was to assess the cytogenetic effects of the X ray irradiation used during a CT scan in order to estimate the mean absorbed dose in circulating lymphocytes. Chromosomal aberrations were scored in blood lymphocytes of ten patients undergoing CT scans, by applying fluorescence in situ hybridisation (FISH) to metaphase cells and premature chromosome condensation (PCC) with chromosomes 1, 3 and 4 painting probes immediately after exposure. This generated a dosimetric index that reflects the dose to the circulating lymphocytes. By using PCC a significant increase in the frequency of chromosomal fragment was observed immediately after a CT scan. However, no significant increase in chromosomal aberration was detected in metaphase cells. The mean dosimetric index immediately after exposure was 0.057 Gy (95% CI: 0.052-0.082 Gy). This dosimetric index depends essentially on the size of the examined and exposed blood volumes. This dose is in close agreement with the dose length product (DLP) (Gy cm) (R = 0.80). It should be kept in mind when justifying requests for diagnostic CT scan especially in young patients. The presence of chromosomal fragments after a CT scan indicated the cytogenetic effect of a low dose. PCC associated with chromosome painting is a method for detecting the cytogenetic effect of a low dose immediately after exposure.  相似文献   

20.
For measurements of the equivalent dose of the mixed radiation fields in aircraft many different measuring devices are usually necessary for consideration of the different components of the radiation field. The possibility is discussed of using thermoluminescence dosemeters (TLDS) for determination of absorbed dose and average LET of this complex radiation field in aircraft. The HTR method, developed for determination of the equivalent dose in spacecraft, enables the measurement of the average LET in addition to the absorbed dose. Furthermore, a rem counter based on TLDs and a modified pair method (TLD-600, TLD-700) was used for determination of the absorbed dose due to the neutron component. Using small TLD crystals it is possible to obtain the depth distribution of absorbed dose and average LET by exposing TLDs in Bonner spheres with different diameters. The results indicate that the standards for determination of the effective dose may not be applicable in these mixed radiation fields in aircraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号