首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fucosyltransferases (FucTs) usually catalyze the final step of glycosylation and are critical to many biological processes. High levels of specific FucT activities are often associated with various cancers. Here we report the development of a chemoenzymatic method for synthesizing a library of guanosine diphosphate β‐L ‐fucose (GDP‐Fuc) derivatives, followed by in situ screening for inhibitory activity against bacterial and human α‐1,3‐FucTs. Several compounds incorporating appropriate hydrophobic moieties were identified from the initial screening. These were individually synthesized, purified and characterized in detail for their inhibition kinetics. Compound 5 had a Ki of 29 nM for human FucT‐VI, and is 269 and 11 times more selective than for Helicobacter pylori FucT (Ki=7.8 μM) and for human FucT‐V (Ki=0.31 μM).  相似文献   

2.
3.
The synthesis of potent inhibitors of GH93 arabinanases as well as a synthesis of a chromogenic substrate to measure GH93 arabinanase activity are described. An insight into the reasons behind the potency of the inhibitors was gained through X‐ray crystallographic analysis of the arabinanase Arb93A from Fusarium graminearum. These compounds lay a foundation for future inhibitor development as well as for the use of the chromogenic substrate in biochemical studies of GH93 arabinanases.  相似文献   

4.
Fatty acid amide hydrolase (FAAH) is a serine hydrolase that terminates the analgesic and anti‐inflammatory effects of endocannabinoids such as anandamide. Herein, structure–activity relationship studies on a new series of aryl N‐(ω‐imidazolyl‐ and ω‐tetrazolylalkyl)carbamate inhibitors of FAAH were investigated. As one result, a pronounced increase in inhibitory potency was observed if a phenyl residue attached to the carbamate oxygen atom was replaced by a pyridin‐3‐yl moiety. The most active compounds exhibited IC50 values in the low nanomolar range. In addition, investigations on the metabolic properties of these inhibitors were performed. In rat liver homogenate and in porcine plasma, the extent of their degradation was shown to be strongly dependent on the kind of aryl residue bound to the carbamate as well as on the length and type of the alkyl spacer connecting the carbamate group with the heterocyclic system. With the aid of esterase inhibitors it was shown that in porcine plasma, carboxylesterase‐like enzymes and paraoxonase are involved in carbamate cleavage. Moreover, it was found that highly active pyridin‐3‐yl carbamates reacted with albumin, which led to covalent albumin adducts.  相似文献   

5.
Disarmed forces : Inhibition of the central virulence regulator ClpP by structurally refined β‐lactones resulted in dramatically reduced production of devastating virulence factors, including pyrogenic toxin superantigens derived from pathogenic multiresistant Staphylococcus aureus strains. Targeting of this virulence regulator could present an attractive strategy for neutralizing the harmful effects of bacterial pathogens, and help the host immune response to eliminate the disarmed bacteria.

  相似文献   


6.
7.
Human tankyrases are attractive drug targets, especially for the treatment of cancer. We identified a set of highly potent tankyrase inhibitors based on a 2‐phenyl‐3,4‐dihydroquinazolin‐4‐one scaffold. Substitutions at the para position of the scaffold′s phenyl group were evaluated as a strategy to increase potency and improve selectivity. The best compounds displayed single‐digit nanomolar potencies, and profiling against several human diphtheria‐toxin‐like ADP‐ribosyltransferases revealed that a subset of these compounds are highly selective tankyrase inhibitors. The compounds also effectively inhibit Wnt signaling in HEK293 cells. The binding mode of all inhibitors was studied by protein X‐ray crystallography. This allowed us to establish a structural basis for the development of highly potent and selective tankyrase inhibitors based on the 2‐phenyl‐3,4‐dihydroquinazolin‐4‐one scaffold and outline a rational approach to the modification of other inhibitor scaffolds that bind to the nicotinamide site of the catalytic domain.  相似文献   

8.
The response to chemotherapy in cancer patients is frequently compromised by drug resistance. Although chemoresistance is a multifactorial phenomenon, many studies have demonstrated that altered drug metabolism through the expression of phase II conjugating enzymes, including glutathione transferases (GSTs), in tumor cells can be directly correlated with resistance against a wide range of marketed anticancer drugs. In particular, overexpression of glutathione transferase P1 (GSTP1) appears to be a factor for poor prognosis during cancer therapy. Former and ongoing clinical trials have confirmed GSTP1 inhibition as a principle for antitumor therapy. A new series of 1,2,4‐trioxane GSTP1 inhibitors were designed via a type II photooxygenation route of allylic alcohols followed by acid‐catalyzed peroxyacetalization with aldehydes. A set of novel inhibitors exhibit low micromolar to high nanomolar inhibition of GSTP1, revealing preliminary SAR for further lead optimization. Importantly, high selectivity over another two human GST classes (GSTA1 and GSTM2) has been achieved. The trioxane GSTP1 inhibitors may therefore serve as a basis for the development of novel drug candidates in overcoming chemoresistance.  相似文献   

9.
Specific inhibition of histone deacetylase 8 (HDAC8) has been suggested as a promising option for the treatment of neuroblastoma and T‐cell malignancies. A novel class of highly potent and selective HDAC8 inhibitors with a pyrimido[1,2‐c][1,3]benzothiazin‐6‐imine scaffold was studied that is completely different from the traditional concept of HDAC inhibitors comprising a zinc binding group (ZBG), in most cases a hydroxamate group, a spacer, and a capping group that may interact with the surface of the target protein. Although lacking a ZBG, some of the new compounds were shown to have outstanding potency against HDAC8 in the single‐digit nanomolar range. The pyrimido[1,2‐c][1,3]benzothiazin‐6‐imines also inhibited the growth of solid and hematological tumor cells. The small size and beneficial physicochemical properties of the novel HDAC inhibitor class underline the high degree of drug likeness. This and the broad structure–activity relationship suggest great potential for the further development of compounds with the pyrimido[1,2‐c][1,3]benzothiazin‐6‐imine scaffold into innovative and highly effective therapeutic drugs against cancer.  相似文献   

10.
Several 2‐anilino‐3‐aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU‐145, A549, MDA‐MB‐231, and MCF‐7. Their IC50 values ranged from 0.77 to 23.6 μm . Among the series, compounds 7 f [(4‐fluorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] and 7 g [(4‐chlorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g , respectively, and were much lower than that of the reference compound E7010 [N‐(2‐(4‐hydroxyphenylamino)pyridin‐3‐yl)‐4‐methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V–FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β‐tubulin at the colchicine binding site.  相似文献   

11.
At present, inhibitors of α/β‐hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the development of 1,2,5‐thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized, and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4‐morpholino‐1,2,5‐thiadiazol‐3‐yl cyclooctyl(methyl)carbamate (JZP‐430) potently and irreversibly inhibited hABHD6 (IC50=44 nM ) and showed ~230‐fold selectivity over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off‐targets of related compounds. Additionally, activity‐based protein profiling indicated that JZP‐430 displays good selectivity among the serine hydrolases of the mouse brain membrane proteome. JZP‐430 has been identified as a highly selective, irreversible inhibitor of hABHD6, which may provide a novel approach in the treatment of obesity and type II diabetes.  相似文献   

12.
A practical chemoenzymatic method for the synthesis of 9‐hydroxynonanoic acid and 1,9‐nonanedioic acid (i.e., azelaic acid) from oleic acid [(9Z)‐octadec‐9‐enoic acid] was investigated. Biotransformation of oleic acid into 9‐(nonanoyloxy)nonanoic acid via 10‐hydroxyoctadecanoic acid and 10‐keto‐octadecanoic acid was driven by a C‐9 double bond hydratase from Stenotrophomonas maltophilia, an alcohol dehydrogenase from Micrococcus luteus, and a Baeyer–Villiger monooxygenase (BVMO) from Pseudomonas putida KT2440, which was expressed in recombinant Escherichia coli. After production of the ester (i.e., the BVMO reaction product), the compound was chemically hydrolyzed to n‐nonanoic acid and 9‐hydroxynonanoic acid because n‐nonanoic acid is toxic to E. coli. The ester was also converted into 9‐hydroxynonanoic acid and the n‐nonanoic acid methyl ester, which can be oxygenated into the 9‐hydroxynonanoic acid methyl ester by the AlkBGT from P. putida GPo1. Finally, 9‐hydroxynonanoic acid was chemically oxidized to azelaic acid with a high yield under fairly mild reaction conditions. For example, whole‐cell biotransformation at a high cell density (i.e., 10 g dry cells/L) allowed the final ester product concentration and volumetric productivity to reach 25 mM and 2.8 mM h−1, respectively. The overall molar yield of azelaic acid from oleic acid was 58%, based on the biotransformation and chemical transformation conversion yields of 84% and 68%, respectively.

  相似文献   


13.
The synthesis of 37 1‐(1H‐indol‐3‐yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti‐staphylococcal activity. By contrast, several of the compounds restored, in a concentration‐dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure–activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)‐N‐benzylidene‐2‐(tert‐butoxycarbonylamino)‐1‐(5‐iodo‐1H‐indol‐3‐yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA‐1199B strain when used at a concentration of 0.5 mg L ?1. To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert‐butyl (2‐(3‐hydroxyureido)‐2‐(1H‐indol‐3‐yl)ethyl)carbamate, which is not toxic for human cells, was also found.  相似文献   

14.
Pyridylalanine inhibitors of histone deacetylase (HDAC) have been synthesized that show selectivity for the isoform HDAC6 over HDAC1 in vitro. This selectivity was also identified in cancer cells by analyzing tubulin versus histone acetylation. The compounds show decreased intrinsic cytotoxicity relative to pan‐HDAC inhibitors, but show antiproliferative synergy with the proteasome inhibitor bortezomib.

  相似文献   


15.
Biotransformation of long‐chain fatty acids into medium‐chain α,ω‐dicarboxylic acids or ω‐aminocarboxylic acids could be achieved with biocatalysts. This study presents the production of α,ω‐dicarboxylic acids (e.g., C9, C11, C12, C13) and ω‐aminocarboxylic acids (e.g., C11, C12, C13) directly from fatty acids (e.g., oleic acid, ricinoleic acid, lesquerolic acid) using recombinant Escherichia coli‐based biocatalysts. ω‐Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via enzymatic reactions involving a fatty acid double bond hydratase, an alcohol dehydrogenase, a Baeyer–Villiger monooxygenase and an esterase, were then oxidized to α,ω‐dicarboxylic acids by alcohol dehydrogenase (ADH, AlkJ) from Pseudomonas putida GPo1 or converted into ω‐aminocarboxylic acids by a serial combination of ADH from P. putida GPo1 and an ω‐transaminase of Silicibacter pomeroyi. The double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli‐native enzymes during the biotransformations. This study demonstrates that the industrially relevant building blocks (C9 to C13 saturated α,ω‐dicarboxylic acids and ω‐aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis.

  相似文献   


16.
Cyclase‐free at last : A methylene‐interrupted meso‐bis‐epoxide was stereoselectively converted into dihydroxy‐tetrahydrofuran derivatives with excellent de and ee values through an enzyme‐triggered nucleophilic hydrolysis/cyclisation cascade. Molecular modelling showed that the point of enzyme attack was determined by the stereospecificity of the epoxide hydrolase, whereas the stereochemical course of the cyclisation step was solely governed by Baldwin's rules and did not invoke the involvement of a “cyclase”.

  相似文献   


17.
Selective MMP inhibitors : Eleven α‐sulfonylphosphonates were synthesized and tested as MMP inhibitors. The IC50 values for most of them are in the nanomolar range against MMP‐2, ‐8, ‐13, and ‐14, with an interesting selectivity profile versus MMP‐9.

  相似文献   


18.
A series of 3‐hydroxy‐3‐phenacyloxindole analogues of isatin were designed, synthesized, and evaluated in vitro for their inhibitory activity toward monoamine oxidase (MAO) A and B. Most of the synthesized compounds proved to be potent and selective inhibitors of MAO‐A rather than MAO‐B. 1‐Benzyl‐3‐hydroxy‐3‐(4′‐hydroxyphenacyl)oxindole (compound 18 ) showed the highest MAO‐A inhibitory activity (IC50: 0.009±0.001 μm , Ki: 3.69±0.003 nm ) and good selectivity (selectivity index: 60.44). Kinetic studies revealed that compounds 18 and 16 (1‐benzyl‐3‐hydroxy‐3‐(4′‐bromophenacyl)oxindole) exhibit competitive inhibition against MAO‐A and MAO‐B, respectively. Structure–activity relationship studies suggested that the 3‐hydroxy group is an essential feature for these analogues to exhibit potent MAO‐A inhibitory activity. Computational studies revealed the possible molecular interactions between the inhibitors and MAO isozymes. The computational data obtained are congruent with experimental results. Further studies on the lead inhibitors, including co‐crystallization of inhibitor–MAO complexes and in vivo evaluations, are essential for their development as potential therapeutic agents for the treatment of MAO‐associated neurological disorders.  相似文献   

19.
Herein we present the design, synthesis, and evaluation of a structurally novel library of 20 peptidyl 3‐aryl vinyl sulfones as inhibitors of cathepsins L and B. The building blocks, described here for the first time, were synthesized in a highly efficient and enantioselective manner, starting from 3‐aryl‐substituted allyl alcohols. The corresponding vinyl sulfones were prepared by a new approach, based on a combination of solid‐phase peptide synthesis using the Fmoc/tBu strategy, followed by solution‐phase coupling to the corresponding (R)‐3‐amino‐3‐aryl vinyl sulfones as trifluoroacetate salts. The inhibitory activity of the resulting compounds against cathepsins L and B was evaluated, and the compound exhibiting the best activity was selected for enzymatic characterization. Finally, docking studies were performed in order to identify key structural features of the aryl substituent.  相似文献   

20.
A series of N‐bromoacetylglycosylamines and bromoketone C‐glycosides were synthesised from complex xyloglucan oligosaccharide (XyGO) scaffolds as specific active‐site affinity labels for endo‐xyloglucanases. Compounds based on XXXG (Xyl3Glc4) and XLLG (Xyl3Glc4Gal2) oligosaccharides exhibited strikingly higher affinities and higher rates of irreversible inhibition than known cellobiosyl and new lactosyl disaccharide congeners when tested with endo‐xyloglucanases from two distinct glycoside hydrolase (GH) families. Intact‐protein mass spectrometry indicated that inactivation with XyGO derivatives generally resulted in a 1:1 labelling stoichiometry. Together, these results indicate that XyGO‐based affinity reagents have significant potential as inhibitors and proteomic reagents for the identification and analysis of diverse xyloglucan‐active enzymes in nature, to facilitate industrial enzyme applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号