首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low‐temperature helium plasma treatment followed by grafting of N‐vinyl‐2‐pyrrolidone (NVP) onto poly(ether sulfone) (PES) ultrafiltration (UF) membranes was used to modify commercial PES membranes. Helium plasma treatment alone and post‐NVP grafting substantially increased the surface hydrophilicity compared with the unmodified virgin PES membranes. The degree of modification was adjusted by plasma treatment time and polymerization conditions (temperature, NVP concentration, and graft density). The NVP‐grafted PES surfaces were characterized by Fourier transform infrared attenuated total reflection spectroscopy and electron spectroscopy for chemical analysis. Plasma treatment roughened the membrane as measured by atomic‐force microscopy. Also, using a filtration protocol to simulate protein fouling and cleaning potential, the surface modified membranes were notably less susceptible to BSA fouling than the virgin PES membrane or a commercial low‐protein binding PES membrane. In addition, the modified membranes were easier to clean and required little caustic to recover permeation flux. The absolute and relative permeation flux values were quite similar for the plasma‐treated and NVP‐grafted membranes and notably higher than the virgin membrane. The main difference being the expected long‐term instability of the plasma treated as compared with the NVP‐grafted membranes. These results provide a foundation for using low‐temperature plasma‐induced grafting on PES with a variety of other molecules, including other hydrophilic monomers besides NVP, charged or hydrophobic molecules, binding domains, and biologically active molecules such as enzymes and ribozymes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1699–1711, 1999  相似文献   

2.
N‐vinyl pyrrolidone (NVP) was grafted onto a polypropylene copolymer (PP) in melt in a Brabender Plasticorder and single screw extruder. The effect of variation of dicumyl peroxide (DCP) and lupersol (LUP) concentrations alone and with 20 wt % NVP concentration in the Brabender Plasticorder on Melt Flow Index (MFI) and final torque values was studied. Variation of NVP concentration (1–10 wt %) at a fixed DCP concentration on percent grafting (G) and MFI was also studied in the single screw extruder. The graft copolymers (PP‐g‐NVP) obtained by reaction of PP with NVP were soxhlet extracted with isopropanol to remove homopolymer, dried, and finally characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PP‐g‐NVP (0–30 wt %) was used as an additive with PP, extruded in the single screw extruder, molded, and the mechanical properties and paint adhesion was measured. MFI values increased and torque values decreased with an increase in initiator concentration, indicating the dominance of the peroxide‐initiated scission reaction over grafting. DCP gave higher grafting compared to LUP. When NVP concentration was increased, MFI values increased initially due to more scission, and then decreased, indicating more graft copolymer formation. Mechanical properties increased by incorporation of PP‐g‐NVP as an additive than PP‐g‐NVP alone. Paint adhesion increased by the presence of PP‐g‐NVP as additive especially with polyurethane primer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2173–2180, 2003  相似文献   

3.
The objective of this research was the surface grafting polymerization of biocompatible monomer N‐vinyl‐2‐pyrrolidone (NVP) onto a plasma‐treated nonwoven poly(ethylene terephthalate) (PET) substrate with ultraviolet (UV)‐induced methods. The effects of various parameters, such as the monomer concentration, reaction time, initiator (ammonium peroxodisulfate) concentration, and crosslinking agent (N,N′‐methylene bisacrylamide) concentration, on the grafting percentage were studied. The grafting efficiency of the modified nonwoven PET surfaces reached a maximum at 50 min of UV irradiation and with a 30 wt % aqueous NVP solution. After the plasma activation and/or grafting, the hydrophobic surface of the nonwoven was modified into a hydrophilic surface. NVP was successfully grafted onto nonwoven PET surfaces. The surface wettability showed that the water absorption of NVP‐grafted nonwoven PET (NVP‐g‐nonwoven PET) increased with increasing grafting time. NVP‐g‐nonwoven PET was verified by Fourier transform infrared spectra and scanning electron microscopy measurements. An antibacterial assessment using an anti‐Staphylococcus aureus test indicated that S. aureus was restrained from growing in NVP‐g‐nonwoven PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 803–809, 2006  相似文献   

4.
Electron‐beam (E‐beam) curing of 4,4′‐bismaleimidodiphenylmethane (BMPM)/BMI‐1,3‐tolyl/o,o′‐diallylbisphenol A (DABPA)–based bismaleimide (BMI) systems and their mixing with various reactive diluents, such as N‐vinylpyrrolidone (NVP) and styrene, were investigated to elucidate how temperature, electron‐beam dosage, and diluent concentration affect the cure extent. The effect of free‐radical initiator on the cure reactions was also studied. It was found that low‐intensity E‐beam exposures cannot cause the polymerization of BMI. High‐intensity E‐beam exposures give high reaction conversion attributed to a high temperature increase, which induced thermal curing. It was shown that the dilution and activation of NVP in BMI cause a more complete BMI cure reaction under E‐beam radiation. BMI/NVP can be initiated easily by low‐intensity E‐beam without thermal curing. FTIR studies indicate that about 70% of the reaction is complete for BMI/NVP with 200 kGy dosage exposure at 10 kGy per pass. The sample temperature only reaches about 75°C. The free‐radical initiator, dicumyl peroxide, can accelerate the reaction rate at the beginning of E‐beam exposure, but does not affect the final reaction conversion. The increase of the concentration of NVP in the BMI/NVP systems increases the reactive conversions almost linearly. © 2004 Wiley Periodicals Inc. J Appl Polym Sci 94: 2407‐2416, 2004  相似文献   

5.
6.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

7.
Two new alkyne‐terminated xanthate reversible addition‐fragmentation chain‐transfer (RAFT) agents: (S)‐2‐(Propynyl propionate)‐(O‐ethyl xanthate) (X3) and (S)‐2‐(Propynyl isobutyrate)‐(O‐ethyl xanthate) (X4) were synthesized and characterized and used for the controlled radical polymerization of N‐vinylpyrrolidone (NVP). X3 showed better chain transfer ability in the polymerization at 60°C. Molecular weight of the resulted polymer increased linearly with the increase in monomer loading. Kinetics study with X3 showed the pseudo‐first order kinetics up to 67% monomer conversion. Molecular weight (Mn) of the resulting polymer increased linearly with the increase in the monomer conversion up to around 67%. With the increase in the monomer conversion, polydispersity of the corresponding poly(NVP)s initially decreased from 1.34 to 1.32 and then increased gradually to 1.58. Chain‐end analysis of the resulting polymer by 1H‐NMR and FTIR showed clearly that polymerization started with radical forming out of xanthate RAFT agent. Living nature of the polymerization was also confirmed from the successful homo‐chain extension experiment and the hetero‐chain extension experiment involving synthesis of poly(NVP)‐b‐polystyrene amphiphilic diblock copolymer. Formed alkyne‐terminated poly(NVP) also allowed easy conjugation to azide‐terminated polystyrene by click chemistry to prepare well‐defined poly(NVP)‐b‐polystyrene block copolymers. Resulting polymers were characterized by GPC, 1H‐NMR, FTIR, and thermal study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
To improve equilibrium water content, dehydrothermally crosslinked poly(vinyl alcohol) (PVA) hydrogel was grafted with N‐vinyl pyrrolidone (NVP) or acrylic acid (AA) monomer using γ‐radiation. Swelling behavior of the grafted hydrogels was studied in phosphate‐buffered saline, and cell viability was evaluated using fibroblast cells from mouse connective tissue. Equilibrium water content of AA‐ and NVP‐grafted PVA hydrogel ranged between 40–60% and 60–80%, respectively, depending on radiation dose and monomer concentration. For maximum degree of swelling, the optimum monomer concentration and radiation dose were 20% by weight and 20 kGy, respectively. Fibroblast cells seeded on NVP‐grafted hydrogel had an extended oval morphology while those seeded on AA‐grafted PVA had a rounded spherical morphology. These results support the use of NVP for grafting PVA to increase swelling and improve cell viability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2862–2868, 2004  相似文献   

9.
BACKGROUND: Polymers supporting chemicals used in agriculture have recently been developed to overcome the serious environmental problems of conventional agrochemicals. The success of these formulations is based on a suitable choice of polymer support. Degradable polymeric hydrogels are of particular interest. The gradual release of the bioactive agent can be achieved by hydrolytic or enzymatic cleavage of the linking bond. RESULTS: In this context, poly[(1‐vinyl‐2‐pyrrolidone)‐co‐(2‐hydroxyethyl methacrylate)] [poly(NVP‐co‐HEMA)] has been used as a bioactive carrier reagent. Herein, we report a controlled‐release system with the herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D) using an ultrafiltration system. Hydrolysis was studied by testing the release at various pH values. A high release with poly(NVP‐co‐HEMA)–2,4‐D was observed at pH = 7 and 10 after two days (Z = 2). The release percentage of copolymer–herbicide increased at pH = 10. It showed release values between 79.0 and 94.5%. Poly(NVP‐co‐HEMA)–herbicide can release a bioactive compound in aqueous solution at pH = 3, 7 and 10. CONCLUSION: Based on the results of homogeneous hydrolysis, it is argued that the herbicide release rate depends on the pH of the reaction environment. This functional polymer could be employed as a biodegradable material for applications in agrichemical release. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
The radiation‐induced graft copolymerization of N‐vinyl‐2‐pyrrolidone (NVP), 4‐vinyl pyridine (4VP), and 2‐vinyl pyridine (2VP) monomers onto poly (ethylene‐alt‐tetrafluoroethylene) (ETFE) was investigated. The influence of synthesis conditions particularly the solvent was studied. Various solvents, such as n‐propanol, isoproponol, benzyl alcohol, methanol, ethanol, cyclohexanone, tetrahydrofuran (THF), nitromethane, 1,4‐dioxane, and n‐heptane were examined for this purpose. Graft copolymers were characterized by Fourier transform infrared (FTIR) spectroscopy, dynamic mechanical analysis (DMA), and scanning electron microscopy‐energy dispersive spectroscopy (SEM‐EDAX). It was found that the nature of the solvent had profound influence over the grafting reaction. Cyclohexanone, n‐propanol, and isoproponol for 4VP/ETFE grafting, THF and 1,4‐dioxane for NVP/ETFE grafting, and benzyl alcohol and methanol for 2VP/ETFE grafting were found to be the suitable solvents yielding highest graft levels. Isoproponol and n‐propanol are promising in terms of both graft level and mechanical properties for 4VP/ETFE. Grafting of NVP, 4VP, and 2VP onto ETFE were verified through FTIR spectroscopy. Storage modulus and glass transition temperature of the copolymers were found to increase as graft level increased. Surface profile of representative films was also investigated by viewing the distribution of elemental nitrogen using SEM‐EDAX. Results indicated that copolymers of 4VP, NVP, and 2VP are considerably different from each other. 4VP‐based copolymers exhibited relatively more homogenous grafting over the surface compared with NVP‐ and 2VP‐based copolymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
RAFT polymerization of N‐vinyl pyrrolidone (NVP) has been investigated in the presence of chain transfer agent (CTA), i.e., prop‐2‐ynyl morpholine‐4‐carbodithioate (PMDC). The influence of reaction parameters such as monomer concentration [NVP], molar ratio of [CTA]/[AIBN, i.e., 2,2′‐azobis (2‐methylpropionitrile)] and [NVP]/[CTA], and temperature have been studied with regard to time and conversion limit. This study evidences the parameters leading to an excellent control of molecular weight and molar mass dispersity. NVP has been polymerized by maintaining molar ratio [NVP]: [PMDC]: [AIBN] = 100 : 1 : 0.2. Kinetics of the reaction was strongly influenced by both temperature and [CTA]/[AIBN] ratio and to a lesser extent by monomer concentration. The activation energy (Ea = 31.02 kJ mol?1) and enthalpy of activation (ΔH?= 28.29 kJ mol?1) was in a good agreement to each other. The negative entropy of activation (ΔS? = ?210.16 J mol‐1K‐1) shows that the movement of reactants are highly restricted at transition state during polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

13.
Ternary mixtures of N‐vinyl‐2‐pyrrolidone/itaconic acid and gelatin were irradiated by gamma rays at 30 kGy/s and at ambient temperature to prepared poly (NVP/IA and G) hydrogels. Poly (NVP/IA) hydrogels were prepared in different compositions (NVP/IA) mole ratio, (100/0), (98/1.5), (96.5/3.5), and (93/7.0) at 30 kGy. Then adding gelatin at different content (5, 10, 15, 20) mg to the best composition (NVP/IA/H2O) (93/7)% for the characterization of network structure of these hydrogels, kinetic swelling drug release behavior and Scan Electron Microscope was studied. The equilibrium degree of swelling for P(NVP/IA) and P(NVP/IA/G) copolymer and the swelling‐degradation kinetics were also studies. According to dynamic swelling studies, both the diffusion exponent and the diffusion coefficient increase with increasing content of (IA), whereas, the addition of gelatin to (NVP/IA) composition by different content did not lead to any significant change in swelling percent. Also, the swelling behavior of copolymer hydrogels in response to pH value of the external media was studied, it is noted that the highest swelling values were at pH 4. The in vitro drug release behavior of these hydrogels was examined by quantification analysis with a UV/VIS spectrophotometers. Chlorpromazine hydrochloride was loaded into dried hydrogels to investigate the stimuli‐sensitive property at the specific pH and the drug release profile of these pH‐sensitive hydrogels in vitro. The release studies show that the highest value of release was at pH 4 which can be used for drug delivery system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Interpenetrating polymer networks (IPNs) based on N‐vinyl pyrrolidone (NVP) : gelatin (Ge), and a copolymer of NVP – acrylic acid (AA) : gelatin (Ge) were prepared using N‐N′methylenebisacrylamide (BIS) (0.5, 1% w/w) and glutaraldehyde (GLU) (0.5% v/v) as crosslinkers, respectively, by gamma irradiation technique. GLU was incorporated after irradiation to crosslink the gelatin chains, whereas BIS was placed in the respective solutions before irradiation. Several samples were prepared by varying the composition of gelatin to NVP or by changing the ratio of NVP : AA in preparing IPNs. The swelling behavior of the hydrogels was investigated as a function of variable doses, crosslinker (BIS) concentration, copolymer composition (NVP : AA ratio) or Ge : NVP ratio and pH of the immersion medium (3, 7.4, and 11). As expected, the swelling ratio increased with increasing acrylic acid content and decreased with increasing BIS content. No definite trend in the swelling behavior was observed as a function of dose. The interpenetration of the polymeric chains was established by morphological and thermal characterization. Scanning electron microscopy of IPNs showed a hybrid of coral and honeycomb structures as compared with the crosslinked polymers based on Ge and NVP (Gx and PVPx). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1456–1463, 2007  相似文献   

15.
Several small molecules that bind to the inactive DFG‐out conformation of tyrosine kinases (called type II inhibitors) have shown a good selectivity profile over other kinase targets. To obtain a set of DFG‐out structures, we performed an explicit solvent molecular dynamics (MD) simulation of the complex of the catalytic domain of a tyrosine kinase receptor, ephrin type‐A receptor 3 (EphA3), and a manually docked type II inhibitor. Automatic docking of four previously reported type II inhibitors was used to select a single snapshot from the MD trajectory for virtual screening. High‐throughput docking of a pharmacophore‐tailored library of 175 000 molecules resulted in about 4 million poses, which were further filtered by van der Waals efficiency and ranked according to a force‐field‐based energy function. Notably, around 20 % of the compounds with predicted binding energy smaller than ?10 kcal mol?1 are known type II inhibitors. Moreover, a series of 5‐(piperazine‐1‐yl)isoquinoline derivatives was identified as a novel class of low‐micromolar inhibitors of EphA3 and unphosphorylated Abelson tyrosine kinase (Abl1). The in silico predicted binding mode of the new inhibitors suggested a similar affinity to the gatekeeper mutant T315I of Abl1, which was verified in vitro by using a competition binding assay. Additional evidence for the type II binding mode was obtained by two 300 ns MD simulations of the complex between N‐(3‐chloro‐4‐(difluoromethoxy)phenyl)‐2‐(4‐(8‐nitroisoquinolin‐5‐yl)piperazin‐1‐yl)acetamide and EphA3.  相似文献   

16.
A Monte Carlo simulation examining the effect of monomer ratios on the composition and sequence distribution of acrylonitrile(AN) copolymers with N‐vinyl pyrrolidone (NVP), itaconic acid (IA), and acrylic acid (AA) as comonomers has been developed. The Kelen–Tudos method was used to estimate monomer reactivity ratios. The results of the simulation are consistent with the academic conclusion and are as foreseen by the experimental data. The average number of NVP identical monomers in a sequence length of AN/NVP copolymer chain increases continuously and the average number of AN identical monomers in a sequence length shows a prominent decrease with an increase of NVP concentration in the feed. Changes in the monomer average number of AN/IA and AN/AA copolymers in a sequence length were the same as those of AN/NVP copolymer with an increase of comonomer concentration in the feed. The optimum weight ratio of AN with comonomers for manufacturing carbon fibers is 98/2. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 483–488, 2005  相似文献   

17.
This work reports the preparation of 2‐hydroxyethyl methacrylate (HEMA)/N‐vinyl‐2‐pyrrolidone (NVP) interpenetrating polymer network (IPN) hydrogels by UV‐initiated polymerization in the presence of free radical photoinitiator Darocur 1173 and cationic photoinitiator 4,4′‐dimethyl diphenyl iodonium hexafluorophosphate. The polymerization mechanism was investigated by the formation of gel network. The structure and morphology of the HEMA/NVP IPN hydrogels were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that the IPN gels exhibited homogeneous morphology. The dehydration rates of HEMA/NVP IPN hydrogels were examined by the gravimetric method. The results revealed that the hydrogels had a significant improvement of antidehydration ability in comparison with poly(2‐hydroxyethyl methacrylate)(PHEMA) hydrogel embedded physically with poly(N‐vinyl‐2‐pyrrolidone)(PVP). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Poly(acrylonitrile‐coN ‐vinyl‐2‐pyrrolidone)s (PANCNVPs) show excellent biocompatibility. In this work, PANCNVPs with different contents of N‐vinyl‐2‐pyrrolidone (NVP) were fabricated into asymmetric membranes by the phase inversion method. The surface chemical composition of the resultant membranes was determined by Fourier transform infrared spectroscopy–attenuated total reflection. Field emission scanning electron microscopy was used to examine the surface and cross section morphologies of the membranes. It was found that the morphologies hardly change with the increase of NVP content in PANCNVP, while the deionized water flux increases remarkably and the bovine serum albumin (BSA) retention decreases slightly. Experiment of dynamic BSA solution filtration was carried out to evaluate the antifouling properties of the studied membranes. The relative flux reduction of PANCNVP membrane containing 30.9 wt % of NVP is 25.9%, which is far smaller than that of the polyacrylonitrile membrane (68.8%). Results deduce that this improvement comes from the excellent biocompatibility of NVP moieties instead of the hydrophilicity change, because the water contact angles of these membranes fluctuate between 60 and 70°. Results from the membranes using poly(N‐vinyl‐2‐pyrrolidone) (PVP) as an additive confirm that, to a certain extent, the PANCNVP membranes show the advantages of antifouling compared with the polyacrylonitrile/PVP blending membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4577–4583, 2006  相似文献   

19.
Chlorinated poly(vinyl chloride) (CPVC) membranes for microfiltration processes were prepared with the combined process of a solvent evaporation technique and the water‐vapor induced‐phase‐inversion method. CPVC membranes with a mean pore size of 0.7 μm were very hydrophobic. These membranes were subjected to surface modification by ultraviolet (UV)‐assisted graft polymerization with N‐vinyl‐2‐pyrrolidinone (NVP) to increase their surface wettability and decrease their adsorptive fouling. The grafting yields of the modified membranes were controlled by alteration of UV irradiation time and NVP monomer concentration. The changes in chemical structure between the CPVC membrane and the CPVC‐g‐poly(N‐vinyl‐2‐pyrrolidinone) membrane and the variation of the topologies of the modified PVC membranes were characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, and field emission scanning electron microscopy. According to the results, the graft yield of the modified CPVC membrane reached a maximum at 5 min of UV exposure time and 20 vol % NVP concentration. The filtration behavior of these membranes was investigated with deionized water by a crossflow filtration measurement. The surface hydrophilicity and roughness were easily changed by the grafting of NVP on the surface of the CPVC membrane through a simultaneous irradiation grafting method by UV irradiation. To confirm the effect of grafting for filtration, we compared the unmodified and modified CPVC membranes with respect to their deionized water permeation by using crossflow filtration methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3188–3195, 2003  相似文献   

20.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号