首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, anticancer peptides (ACPs) have emerged as unique and promising therapeutic agents for cancer treatment compared with antibody and small molecule drugs. In addition to experimental methods of ACPs discovery, it is also necessary to develop accurate machine learning models for ACP prediction. In this study, features were extracted from the three-dimensional (3D) structure of peptides to develop the model, compared to most of the previous computational models, which are based on sequence information. In order to develop ACPs with more potency, more selectivity and less toxicity, the model for predicting ACPs, hemolytic peptides and toxic peptides were established by peptides 3D structure separately. Multiple datasets were collected according to whether the peptide sequence was chemically modified. After feature extraction and screening, diverse algorithms were used to build the model. Twelve models with excellent performance (Acc > 90%) in the ACPs mixed datasets were used to form a hybrid model to predict the candidate ACPs, and then the optimal model of hemolytic peptides (Acc = 73.68%) and toxic peptides (Acc = 85.5%) was used for safety prediction. Novel ACPs were found by using those models, and five peptides were randomly selected to determine their anticancer activity and toxic side effects in vitro experiments.  相似文献   

2.
With the aim of contributing to the development of novel antitumor agents, high‐affinity σ2 receptor agonists were developed, with 6,7‐dimethoxy‐2‐[4‐[1‐(4‐fluorophenyl)‐1H‐indol‐3‐yl]butyl]‐1,2,3,4‐tetrahydroisoquinoline ( 15 ) and 9‐[4‐(6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinolin‐2‐yl)butyl]‐9H‐carbazole ( 25 ) showing exceptional selectivity for the σ2 subtype. Most of the compounds displayed notable antiproliferative activity in human MCF7 breast adenocarcinoma cells, with similar activity in the corresponding doxorubicin‐resistant MCF7adr cell line. Surprisingly, a few compounds, including 25 , displayed enhanced activity in MCF7adr cells over parent cells, recalling the phenomenon of collateral sensitivity, which is under study for the treatment of drug‐resistant tumors. All of the compounds showed interaction with P‐glycoprotein (P‐gp), and 15 and 25 , with the greatest activity, were able to revert P‐gp‐mediated resistance and reestablish the antitumor effect of doxorubicin in MCF7adr cells. We therefore identified a series of σ2 receptor agonists endowed with intriguing antitumor properties; these compounds deserve further investigation for the development of alternate strategies against multidrug‐ resistant cancers.  相似文献   

3.
Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz ) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP‐encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP–docetaxel was found to be 2.5‐fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP–docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ~1.5‐fold.  相似文献   

4.
γ‐Glutamylcyclotransferase (GGCT) depletion inhibits cancer cell proliferation. However, whether the enzymatic activity of GGCT is critical for the regulation of cancer cell growth remains unclear. In this study, a novel diester‐type cell‐permeable prodrug, pro‐GA, was developed based on the structure of N‐glutaryl‐l ‐alanine (GA), by structure optimization using temporary fluorophore‐tagged prodrug candidates. The antiproliferative activity of pro‐GA was demonstrated using GGCT‐overexpressing NIH‐3T3 cells and human cancer cells including MCF7, HL‐60, and PC3 cells. By contrast, normal cells were not significantly affected by pro‐GA treatment. Moreover, pro‐GA administration exhibited anticancer effects in a xenograft model using immunocompromised mice inoculated with PC3 cells. These results indicate that the enzymatic activity of GGCT accelerates tumor growth and that GGCT inhibition is a promising therapeutic strategy for the treatment of GGCT‐overexpressing tumors.  相似文献   

5.
Sirtuins, NAD+‐dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform‐selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3‐((2‐methoxynaphthalen‐1‐yl)methyl)‐7‐((pyridin‐3‐ylmethyl)amino)‐5,6,7,8‐tetrahydrobenzo[4,5]thieno[2,3‐d]pyrimidin‐4(3H)‐one (ICL‐SIRT078), a substrate‐competitive SIRT2 inhibitor with a Ki value of 0.62±0.15 μM and more than 50‐fold selectivity against SIRT1, 3 and 5. Treatment of MCF‐7 breast cancer cells with ICL‐SIRT078 results in hyperacetylation of α‐tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF‐7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson’s disease, we find that compound ICL‐SIRT078 has a significant neuroprotective effect in a lactacystin‐induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL‐SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson’s disease.  相似文献   

6.
Cyclotides, ultrastable disulfide‐rich cyclic peptides, can be engineered to bind and inhibit specific cancer targets. In addition, some cyclotides are toxic to cancer cells, though not much is known about their mechanisms of action. Here we delineated the potential mode of action of cyclotides towards cancer cells. A novel set of analogues of kalata B1 (the prototypic cyclotide) and kalata B2 and cycloviolacin O2 were examined for their membrane‐binding affinity and selectivity towards cancer cells. By using solution‐state NMR, surface plasmon resonance, flow cytometry and bioassays we show that cyclotides are toxic against cancer and non‐cancerous cells and their toxicity correlates with their ability to target and disrupt lipid bilayers that contain phosphatidylethanolamine phospholipids. Our results suggest that the potential of cyclotides as anticancer therapeutics might best be realised by combining their amenability to epitope engineering with their ability to bind cancer cell membranes.  相似文献   

7.
The antiproliferative properties and biological impact of octahedral iridium(III) complexes of the type fac‐[IrCl3(DMSO)(pp)] containing pp=phenanthroline ( 1 ) and its 4‐ and 5‐methyl ( 2 , 3 ) and 4,7‐ and 5,6‐dimethyl derivatives ( 4 , 5 ) were investigated for both adherent and non‐adherent cells. A series of similar rhodium(III) complexes were studied for comparison purposes. The antiproliferative activity toward MCF‐7 cancer cells increases eightfold from IC50=4.6 for 1 to IC50=0.60 μM for 5 , and an even more pronounced 18‐fold improvement was established for the analogous rhodium complexes 6 and 8 , the respective IC50 values for which are 1.1 and 0.06 μM . Annexin V/propidium iodide assays demonstrated that the 5,6‐dimethylphenanthroline complexes 5 and 8 both cause significant inhibition of Jurkat leukemia cell proliferation and invoke extensive apoptosis but negligible necrosis. The percentages of Jurkat cells exhibiting high levels of reactive oxygen species correlate with the percentages of cells undergoing apoptosis. The antiproliferative activity of 5 and 8 is strongly selective toward MCF‐7 and HT‐29 cancer cells over normal HFF‐1 and immortalized HEK‐293 cells. Complex 5 also exhibits high selectivity toward BJAB lymphoma cells relative to healthy leukocytes. Both 5 and 8 invoke permanent decreases in the adhesion and respiration of MCF‐7 cells.  相似文献   

8.
Schäfer A  Wellner A  Gust R 《ChemMedChem》2011,6(5):794-803
In this study, we synthesized 1,2,4‐triarylpyrroles as ligands for the estrogen receptor (ER). Two pyrrole series were prepared with either C3‐alkyl or C3/C5‐dialkyl residues. Compounds from both series were susceptible to oxidative degradation—dialkylated compounds (t1/2=33–66 h) to a higher extent than their monoalkylated congeners (t1/2=140–211 h). Nevertheless, stability was sufficient for determination of in vitro ER binding affinity. The most active agonist in hormone‐dependent, ERα‐positive MCF‐7/2a and U2‐OS/α cells was 1,2,4‐tris(4‐hydroxyphenyl)‐3‐propyl‐1H‐pyrrole ( 6 d ) (MCF‐7/2a: EC50=70 nM ; U2‐OS/α: EC50=1.6 nM ). A corresponding inactivity in U2‐OS/β cells demonstrated the high ERα selectivity. This trend was confirmed in a competition experiment using estradiol (E2) and purified hERα and hERβ proteins (relative binding affinity (RBA) calculated for 6 d : RBA(ERα)=1.85 %; RBA(ERβ) <0.01 %). Generally, C3/C5‐dialkyl substitution led to reduction of activity, possibly due to lower stability.  相似文献   

9.
The syntheses and antiproliferative activities of novel substituted tetrahydroisoquinoline derivatives and their sulfamates are discussed. Biasing of conformational populations through substitution on the tetrahydroisoquinoline core at C1 and C3 has a profound effect on the antiproliferative activity against various cancer cell lines. The C3 methyl‐substituted sulfamate (±)‐7‐methoxy‐2‐(3‐methoxybenzyl)‐3‐methyl‐6‐sulfamoyloxy‐1,2,3,4‐tetrahydroisoquinoline ( 6 b ), for example, was found to be ~10‐fold more potent than the corresponding non‐methylated compound 7‐methoxy‐2‐(3‐methoxybenzyl)‐6‐sulfamoyloxy‐1,2,3,4‐tetrahydroisoquinoline ( 4 b ) against DU‐145 prostate cancer cells (GI50 values: 220 nM and 2.1 μM , respectively). Such compounds were also found to be active against a drug‐resistant MCF breast cancer cell line. The position and nature of substitution of the N‐benzyl group in the C3‐substituted series was found to have a significant effect on activity. Whereas C1 methylation has little effect on activity, introduction of C1 phenyl and C3‐gem‐dimethyl substituents greatly decreases antiproliferative activity. The ability of these compounds to inhibit microtubule polymerisation and to bind tubulin in a competitive manner versus colchicine confirms the mechanism of action. The therapeutic potential of a representative compound was confirmed in an in vivo multiple myeloma xenograft study.  相似文献   

10.
Tryptanthrin is an indoloquinazoline alkaloid isolated from indigo. Tryptanthrin and its benzo‐annulated derivative, benzo[b]tryptanthrin, inhibit both topoisomerases I (topo I) and II (topo II) and cause cytotoxicity in several human cancer cell lines. From diverse assessment methods, including cleavage complex stabilization, comet, DNA unwinding/intercalation, topo II ATPase inhibition, ATP competition for topo II, and wound‐healing assays, we determined that the mode of action of benzo[b]tryptanthrin is as a DNA non‐intercalative and ATP‐competitive topo I and II dual catalytic inhibitor. Benzo[b]tryptanthrin induced apoptosis through the cleavage of caspase‐3 and PARP in HCT15 colon cancer cells. Additionally, benzo[b]tryptanthrin reversed adriamycin resistance by down‐regulation of multidrug resistance protein 1 (MDR1) in adriamycin‐resistant MCF7 breast cancer cells (MCF7adr) with more potent inhibitory activity than tryptanthrin. Taken together, derivatization by benzo‐annulation of tryptanthrin ameliorated the MDR‐reversing effect of tryptanthrin and may pave the way to the discovery of a novel potent adjuvant agent for chemotherapy.  相似文献   

11.
The in vitro anticancer activity of the dinuclear trithiolato‐bridged arene ruthenium complex diruthenium‐1 (DiRu‐1) was evaluated against a panel of human cancer cell lines used as in vitro models for hepatocellular carcinoma (HepG2 cells), estrogen‐responsive breast adenocarcinoma (MCF‐7 cells), and triple‐negative breast adenocarcinoma (MDA‐MB‐231 cells). DiRu‐1 is highly cytotoxic to these cell lines, demonstrating half‐maximal inhibitory concentrations (IC50) in the low‐nanomolar range (77±1.4 to 268.2±4.4 nm ). The main molecular mechanisms responsible for the high cytotoxicity of DiRu‐1 against the most responsive MCF‐7 cell line (IC50=77±1.4 nm) were investigated on the basis of the capacity of DiRu‐1 to induce oxidative stress, apoptosis, and DNA damage, and to inhibit the cell cycle and proliferation. The results show that DiRu‐1 triggers caspase‐dependent apoptosis in MCF‐7 cells on both the intrinsic and extrinsic pathways. Moreover, the Ru complex also causes necrosis, mitotic catastrophe, and autophagy. DiRu‐1 increases the intracellular levels of reactive oxygen species (ROS), which play a significant role in its cytotoxicity and pro‐apoptotic activity. An important mechanism of the anticancer activity of DiRu‐1 appears to be the induction of DNA lesions, mainly due to apoptotic DNA fragmentation and cell‐cycle arrest at the G2/M checkpoint. These changes are correlated with the concentration of DiRu‐1, the duration of the cell treatment, and the post‐treatment time.  相似文献   

12.
A specific micro‐RNA (miRNA), micro‐RNA 21 (miR‐21), is strongly overexpressed in breast cancer cells. Antisense inhibition of miRNA function, an important tool for uncovering miRNA biology, which is often used to knockdown miRNA, can cause a notable inhibition of cell growth. In this study, 5‐fluorouracil (5‐FU) was conjugated to polyamidoamine dendrimers via direct encapsulation; this method was then combined with antisense micro‐RNA 21 (as‐miR‐21) strategies to evaluate the effects of the growth suppression of breast cancer cells. Our results show that as‐miR‐21 strategies significantly improved the chemosensitivity of free 5‐FU on breast cancer cells (MCF‐7). In addition, not only could as‐miR‐21 effectively increase the apoptotic cell numbers but it could also bring down the migration ability of MCF‐7 cells. Our results provide invaluable information for the future design of drug–polymer complexes for multimodal cancer treatments. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
14.
The use of peptide receptors as targets for tumor‐selective therapies was envisaged years ago with the findings that receptors for different endogenous regulatory peptides are overexpressed in several primary and metastatic human tumors, and can be used as tumor antigens. Branched peptides can retain or even increase, through multivalent binding, the biological activity of a peptide and are very resistant to proteolysis, thus having a markedly higher in vivo activity compared with the corresponding monomeric peptides. Oligo‐branched peptides, containing the human regulatory peptide neurotensin (NT) sequence, have been used as tumor‐specific targeting agents. These peptides are able to selectively and specifically deliver effector units, for cell imaging or killing, to tumor cells that overexpress NT receptors. Results obtained with branched NT conjugated to different functional units for tumor imaging and therapy indicate that branched peptides are promising novel multifunctional targeting molecules. This study is focused on the role of the releasing pattern of drug‐conjugated branched NT peptides. We present results obtained with oligo‐branched neurotensin peptides conjugated to 6‐mercaptopurin (6‐MP), combretastain A‐4 (CA4) and monastrol (MON). Drugs were conjugated to oligo‐branched neurotensin through different linkers, and the mode‐of‐release, together with cytotoxicity, was studied in different human cancer cell lines. The results show that branched peptides are very promising pharmacodelivery options. Among our drug‐armed branched peptides, NT4–CA4 was identified as a candidate for further development and evaluation in preclinical pharmacokinetic and pharmacodynamic studies. This peptide–drug exhibits significant activity against pancreas and prostate human cancer cells. Consequently, this derivative is of considerable interest due to the high mortality rates of pancreas neuroendocrine tumors and the high incidence of prostate cancer.  相似文献   

15.
The drug release properties of magnesium orotate (MgOr) encapsulated in the chitosan (CS) cavity and the complexation behavior between MgOr and CS were investigated. The MgOr‐loaded CS nanoparticles (MgOrCSNPs) were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy with energy‐dispersive X‐ray spectroscopy. MgOr was successfully encapsulated into the CS cavity. Results with 3‐(4,5‐dimethylthiazol‐2‐yl)2,5‐diphenyl tetrazolium bromide indicated that MgOrCSNPs retained their cytotoxic activity against the liver cancer cell line (HepG2) and breast cancer cell line (MCF‐7), and low toxicity against the human cell line (3T3) and human retinal epithelial cell line (ARPE‐19).  相似文献   

16.
Anticancer peptide (ACP) is a short peptide with less than 50 amino acids that has been discovered in a variety of foods. It has been demonstrated that traditional Chinese medicine or food can help treat cancer in some cases, which suggests that ACP may be one of the therapeutic ingredients. Studies on the anti-cancer properties of Sanghuangporus sanghuang have concentrated on polysaccharides, flavonoids, triterpenoids, etc. The function of peptides has not received much attention. The purpose of this study is to use computer mining techniques to search for potential anticancer peptides from 62 proteins of Sanghuang. We used mACPpred to perform sequence scans after theoretical trypsin hydrolysis and discovered nine fragments with an anticancer probability of over 0.60. The study used AlphaFold 2 to perform structural modeling of the first three ACPs discovered, which had blast results from the Cancer PPD database. Using reverse docking technology, we found the target proteins and interacting residues of two ACPs with an unknown mechanism. Reverse docking results predicted the binding modes of the ACPs and their target protein. In addition, we determined the active part of ACPs by quantum chemical calculation. Our study provides a framework for the future discovery of functional peptides from foods. The ACPs discovered have the potential to be used as drugs in oncology clinical treatment after further research.  相似文献   

17.
Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)‐p‐cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non‐cancerous human embryonic kidney (HEK‐293) cells and human endothelial (ECRF24) cells. Two of these three cancer‐cell‐selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.  相似文献   

18.
The microfilament cytoskeleton protein actin plays an important role in cell biology and affects cytokinesis, morphogenesis, and cell migration. These functions usually fail and become abnormal in cancer cells. The marine‐derived macrolides latrunculins A and B, from the Red Sea sponge Negombata magnifica, are known to reversibly bind actin monomers, forming 1:1 stoichiometric complexes with G‐actin, disrupting its polymerization. To identify novel therapeutic agents for effective treatment of metastatic breast cancer, several semisynthetic derivatives of latrunculin A with diverse steric, electrostatic, and hydrogen bond donor and acceptor properties were rationally prepared. Analogues were designed to modulate the binding affinity toward G‐actin. Examples of these reactions are esterification, acetylation, and N‐alkylation. Semisynthetic latrunculins were then tested for their ability to inhibit pyrene‐conjugated actin polymerization, and subsequently assayed for their antiproliferative and anti‐invasive properties against MCF7 and MDA‐MB‐231 cells using MTT and invasion assays, respectively.  相似文献   

19.
The enzyme N‐myristoyltransferase (NMT) from Trypanosoma brucei has been validated both chemically and biologically as a potential drug target for human African trypanosomiasis. We previously reported the development of some very potent compounds based around a pyrazole sulfonamide series, derived from a high‐throughput screen. Herein we describe work around thiazolidinone and benzomorpholine scaffolds that were also identified in the screen. An X‐ray crystal structure of the thiazolidinone hit in Leishmania major NMT showed the compound bound in the previously reported active site, utilising a novel binding mode. This provides potential for further optimisation. The benzomorpholinone was also found to bind in a similar region. Using an X‐ray crystallography/structure‐based design approach, the benzomorpholinone series was further optimised, increasing activity against T. brucei NMT by >1000‐fold. A series of trypanocidal compounds were identified with suitable in vitro DMPK properties, including CNS exposure for further development. Further work is required to increase selectivity over the human NMT isoform and activity against T. brucei.  相似文献   

20.
Selective inhibitors of the protein tyrosine phosphatase SHP2 (src homology region 2 domain phosphatase; PTPN11), an enzyme that is deregulated in numerous human tumors, were generated through a combination of chemical synthesis and structure‐based rational design. Seventy pyridazolon‐4‐ylidenehydrazinyl benzenesulfonates were prepared and evaluated in enzyme assays. The binding modes of active inhibitors were simulated in silico using a newly generated crystal structure of SHP2. The most powerful compound, GS‐493 (4‐{(2Z)‐2‐[1,3‐bis(4‐nitrophenyl)‐5‐oxo‐1,5‐dihydro‐4H‐pyrazol‐4‐yliden]hydrazino}benzenesulfonic acid; 25 ) inhibited SHP2 with an IC50 value of 71±15 nM in the enzyme assay and was 29‐ and 45‐fold more active toward SHP2 than against related SHP1 and PTP1B. In cell culture experiments compound 25 was found to block hepatocyte growth factor (HGF)‐stimulated epithelial–mesenchymal transition of human pancreatic adenocarcinoma (HPAF) cells, as indicated by a decrease in the minimum neighbor distances of cells. Moreover, 25 inhibited cell colony formation in the non‐small‐cell lung cancer cell line LXFA 526L in soft agar. Finally, 25 was observed to inhibit tumor growth in a murine xenograft model. Therefore, the novel specific compound 25 strengthens the hypothesis that SHP2 is a relevant protein target for the inhibition of mobility and invasiveness of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号