首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain‐promoted alkyne–azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino‐BCN, glutarylamino‐BCN and bis(hydroxymethyl)‐BCN] display reaction rates similar to those of BCN and are less cell‐permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino‐BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N‐glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal‐to‐noise ratios.  相似文献   

2.
3.
Radiolabeled biomolecules with short half‐life times are of increasing importance for positron emission tomography (PET) imaging studies. Herein, we demonstrate an improved and generalized method for synthesizing a [radiometal]‐unsaturated aldehyde as a lysine‐labeling probe that can be easily conjugated into various biomolecules through the RIKEN click reaction. As a case study, 68Ga‐PET imaging of U87MG xenografted mice is demonstrated by using the 68Ga‐DOTA‐RGDyK peptide, which is selective to αVβ3 integrins.  相似文献   

4.
The EphB2 receptor is known to be overexpressed in various types of cancer and is therefore a promising target for tumor cell imaging by positron emission tomography (PET). In this regard, imaging could facilitate the early detection of EphB2‐overexpressing tumors, monitoring responses to therapy directed toward EphB2, and thus improvement in patient outcomes. We report the synthesis and evaluation of several fluorine‐18‐labeled peptides containing the SNEW amino acid motif, with high affinity for the EphB2 receptor, for their potential as radiotracers in the non‐invasive imaging of cancer using PET. For the purposes of radiofluorination, EphB2‐antagonistic SNEW peptides were varied at the C terminus by the introduction of L ‐cysteine, and further by alkyne‐ or azide‐modified amino acids. In addition, two novel bifunctional and bioorthogonal labeling building blocks [18F]AFP and [18F]BFP were applied, and their capacity to introduce fluorine‐18 was compared with that of the established building block [18F]FBAM. Copper‐assisted Huisgen 1,3‐dipolar cycloaddition, which belongs to the set of bioorthogonal click chemistry reactions, was used to introduce both novel building blocks into azide‐ or alkyne‐modified SNEW peptides under mild conditions. Finally, the depletion of copper immediately after radiolabeling is a highly important step of this novel methodology.  相似文献   

5.
We investigated linear aliphatic dialkynes as a new structural class of i,i+7 linkers for the double‐click stapling of p53‐based peptides. The optimal combination of azido amino acids and dialkynyl linker length for MDM2 binding was determined. In a direct comparison between aliphatic and aromatic staple scaffolds, the aliphatic staples resulted in superior binding to MDM2 in vitro and superior p53‐activating capability in cells when using a diazidopeptide derived from phage display. This work demonstrates that the nature of the staple scaffold is an important factor that can affect peptide bioactivity in cells.  相似文献   

6.
A fluorinated cathepsin inhibitor based on the azadipeptide nitrile chemotype was prepared and selected for positron emission tomography (PET) tracer development owing to its high affinity for the oncologically relevant cathepsins L, S, K and B. Labelling with fluorine‐18 was accomplished in an efficient and reliable two‐step, one‐pot radiosynthesis by using 2‐[18F]fluoroethylnosylate as a prosthetic agent. The pharmacokinetic properties of the resulting radiotracer compound were studied in vitro, ex vivo and in vivo in normal rats by radiometabolite analysis and small‐animal positron emission tomography. These investigations revealed rapid conjugate formation of the tracer with glutathione in the blood, which is associated with slow blood clearance. The potential of the developed 18F‐labelled probe to image tumour‐associated cathepsin activity was investigated by dynamic small‐animal PET imaging in nude mice bearing tumours derived from the human NCI‐H292 lung carcinoma cell line. Computational analysis of the obtained image data indicated the time‐dependent accumulation of the radiotracer in the tumours. The expression of the target enzymes in the tumours was confirmed by immunohistochemistry with specific antibodies. This indicates that azadipeptide nitriles have the potential to target thiol‐dependent cathepsins in vivo despite their disadvantageous pharmacokinetics.  相似文献   

7.
Cyanine (Cy) dyes show a general propensity to localize in polarized mitochondria. This mitochondriotropism was used to perform a copper‐free click reaction in the mitochondria of living cells. The in organello reaction of dyes Cy3 and Cy5 led to a product that was easily traceable by Förster resonance energy transfer (FRET). As determined by confocal laser scanning microscopy, the Cy3–Cy5 conjugate showed enhanced retention in mitochondria, relative to that of the starting compounds. This enhancement of a favorable property can be achieved by synthesis in organello, but not outside mitochondria.  相似文献   

8.
Integrin ανβ3 is overexpressed on endothelial cells of growing vessels as well as on several tumor types, and so integrin‐binding radiolabeled cyclic RGD pentapeptides have attracted increasing interest for in vivo imaging of ανβ3 integrin expression by positron emission tomography (PET). Of the cRGD derivatives available for imaging applications, systems comprising multiple cRGD moieties have recently been shown to exhibit highly favorable properties in relation to monomers. To assess the synthetic limits of the cRGD‐multimerization approach and thus the maximum multimer size achievable by using different efficient conjugation reactions, we prepared a variety of multimers that were further investigated in vitro with regard to their avidities to integrin ανβ3. The synthesized peptide multimers containing increasing numbers of cRGD moieties on PAMAM dendrimer scaffolds were prepared by different click chemistry coupling strategies. A cRGD hexadecimer was the largest construct that could be synthesized under optimized reaction conditions, thus identifying the current synthetic limitations for cRGD multimerization. The obtained multimeric systems were conjugated to a new DOTA‐based chelator developed for the derivatization of sterically demanding structures and successfully labeled with 68Ga for a potential in vivo application. The evaluated multimers showed very high avidities—increasing with the number of cRGD moieties—in in vitro studies on immobilized ανβ3 integrin and U87MG cells, of up to 131‐ and 124‐fold, respectively, relative to the underivatized monomer.  相似文献   

9.
The term coupling‐and‐decoupling (CAD) chemistry refers to applications in which efficient bond formation and subsequent cleavage between two moieties is required. Within this context, the scope of the vinyl sulfonate (VSO) group as an efficient tool for CAD chemistry is reported. The coupling step relies on the click features of the Michael‐type addition of diverse nucleophiles to vinyl sulfonates as a valuable methodology. The feasibility of this strategy has been proved by the high yields obtained in mild conditions with model VSO derivatives. Cleavage of the resulting sulfonate adducts either through nucleophilic substitution with different nucleophiles (for alkyl VSO groups) or through hydrolysis (for both alkyl and aryl VSO) are successful strategies for the decoupling step, the former being the most promising, as the reaction proceeds under milder conditions with thiol nucleophiles. Moreover, the click VSO coupling chemistry proves to be orthogonal with the click CuAAC reaction, which enables the VSO‐CAD methodology for the preparation of hetero‐bifunctional clickable and cleavable linkers for double click modular strategies. The potential of the VSO‐CAD chemistry is demonstrated in two biologically relevant examples: the decoupling of sulfonates with glutathione (GSH) under conditions compatible with those of living systems; and the synthesis of homo‐ and heterogeneous multivalent glycosylated systems from 1‐thio and 1‐azido or 1‐azidoethyl sugar derivatives and bis‐vinyl sulfonates (homo systems) or alkynyl‐VSO bifunctional clickable‐cleavable linkers (hetero systems). As proof of concept, the cleavable character of these multivalent systems was demonstrated by using one of them as a reversible linker for the non‐covalent assembling and chemical decoupling of two model lectins.

  相似文献   


10.
11.
Assemble & chelate : Click chemistry enables the efficient and selective synthesis of structurally diverse conjugates containing a central di‐1,2,3‐triazole chelator for complexation with [99mTc(CO)3]+. Use of appropriate building blocks allows the modulation of pharmacological relevant characteristics of the conjugate, or the introduction of secondary probes suitable for imaging modalities other than single photon emission computed tomography (SPECT).

  相似文献   


12.
Copper‐catalysed alkyne–azide 1,3‐dipolar cycloaddition (CuAAC) is the predominantly used bioconjugation method in the field of activity‐based protein profiling (ABPP). Several limitations, however, including conversion efficiency, protein denaturation and buffer compatibility, restrict the scope of established procedures. We introduce an ABPP customised click methodology based on refined CuAAC conditions together with new accelerating copper ligands. A screen of several triazole compounds revealed the cationic quaternary {3‐[4‐({bis[(1‐tert‐butyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amino}methyl)‐1H‐1,2,3‐triazol‐1‐yl]propyl}trimethylammonium trifluoroacetate (TABTA) to be a superior ligand. TABTA exhibited excellent in vitro conjugation kinetics and optimal ABPP labelling activity while almost exclusively preserving the native protein fold. The application of this CuAAC‐promoting system is amenable to existing protocols with minimal perturbations and is even compatible with previously unusable buffer systems such as Tris ? HCl.  相似文献   

13.
14.
Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)‐binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine‐based fluorescent probes in vitro and rationalize our results by electronic structure calculations.  相似文献   

15.
The multistep catalytic process using designer cells, either added as freshly prepared suspensions or as stable lyophilized powder, and click reaction can be performed in one pot. The sequence of four reactions allows the production of both enantiomers of β‐hydroxytriazoles with high enantiomeric excess.  相似文献   

16.
17.
A series of hybrid analogues was designed by combination of the iminoxylitol scaffold of parent 1C9‐DIX with triazolylalkyl side chains. The resulting compounds were considered potential pharmacological chaperones in Gaucher disease. The DIX analogues reported here were synthesized by CuAAC click chemistry from scaffold 1 (α‐1‐C‐propargyl‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol) and screened as imiglucerase inhibitors. A set of selected compounds were tested as β‐glucocerebrosidase (GBA1) enhancers in fibroblasts from Gaucher patients bearing different genotypes. A number of these DIX compounds were revealed as potent GBA1 enhancers in genotypes containing the G202R mutation, particularly compound DIX‐28 (α‐1‐C‐[(1‐(3‐trimethylsilyl)propyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol), bearing the 3‐trimethylsilylpropyl group as a new surrogate of a long alkyl chain, with approximately threefold activity enhancement at 10 nM . Despite their structural similarities with isofagomine and with our previously reported aminocyclitols, the present DIX compounds behaved as non‐competitive inhibitors, with the exception of the mixed‐type inhibitor DIX‐28.  相似文献   

18.
A highly efficient 18F‐labeling synthon for universal protein labeling is reported. Diverse 18F‐labeled proteins of 66–144 kDa were prepared with [18F]SiFA‐isothiocyanate synthesized by an isotopic 19F for 18F exchange at the silicon atom. Overall preparative radiochemical yields were 20–40 % after 40–50 min. No bone uptake of 18F radioactivity was detected until 90 min post‐injection of 18F‐SiFA‐RSA; this demonstrates the metabolic stability of the [18F]SiFA moiety.

  相似文献   


19.
20.
Novel supported chelating adsorbents bearing diverse multidentate nitrogenated ligands with strong copper(I) affinities are easily prepared in non‐magnetic and magnetic variants using silica and silica‐coated magnetite nanoparticles as suitable supports and the aza‐Michael‐type addition of vinyl sulfones as the ligation tool. These adsorbents are versatile materials with applications in the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) click chemistry where their complexation abilities enable them to act either as heterogeneous click catalysts when used in their complexed form or as copper(I) scavengers when used in their uncomplexed form. In the first instance, they proved to be robust and efficient heterogeneous catalysts to promote click reactions using extremely low doses and showing negligible copper leaching, particularly in the case of the silica‐based non‐magnetic adsorbents, allowing a simple operational protocol for their rapid and easy removal by filtration or magnetic decantation and showing good recyclability properties. In their uncomplexed form, the non‐magnetic chelating adsorbents are very efficient copper scavengers that are able to remove any traces of metal contamination and that can be applied in tandem with any heterogeneous supported copper(I) catalysts or as stand‐alone copper removing system in any click protocol allowing the isolation of metal‐free clicked compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号