首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design, synthesis, spectroscopic and photochemical properties, and biological evaluation of a novel molecular hybrid that is able to deliver nitric oxide (NO) into mitochondria are reported. This molecular conjugate unites a tailored o‐CF3p‐nitroaniline chromophore, for photo‐regulated NO release, and a rhodamine moiety, for mitochondria targeting, in the same molecular skeleton via an alkyl spacer. A combination of steady‐state and time‐resolved spectroscopic and photochemical experiments demonstrate that the two chromogenic units preserve their individual photophysical and photochemical properties in the conjugate quite well. Irradiation with violet light triggers NO release from the nitroaniline moiety and photoionization in the rhodamine center, which also retains considerable fluorescence efficiency. The molecular hybrid preferentially accumulates in the mitochondria of A549 lung adenocarcinoma cells where it induces toxicity at a concentration of 1 μm , exclusively upon irradiation. Comparative experiments, carried out with ad‐hoc‐synthesized model compounds, suggest that the phototoxicity observed at such a low concentration is probably not due to NO itself, but rather to the formation of the highly reactive peroxynitrite that is generated from the reaction of NO with the superoxide anion.  相似文献   

2.
1,4-Naphthoquinones are exceptional building blocks in organic synthesis and have been used to synthesize several well-known pharmaceutically active agents. Herein we report the synthesis, structural characterization, and biological evaluation of new phenylaminosulfanyl-1,4-naphthoquinone derivatives. We evaluated the cytotoxic activity of the synthesized compounds against three human cancer cell lines: A549, HeLa, and MCF-7. Most of the synthesized compounds displayed potent cytotoxic activity. Specifically, compounds 5 e [3,5-dichloro-N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)benzamide], 5 f [N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)-3,5-dinitrobenzamide], and 5 p [N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)thiophene-2-carboxamide] showed remarkable cytotoxic activity. The synthesized compounds showed low toxicity in normal human kidney HEK293 cells. The cytotoxic mechanism of compounds 5 e , 5 f , and 5 p was explored in MCF-7 cells. The results confirmed that these three compounds induce apoptosis and arrest the cell cycle at the G1 phase. In addition, compounds 5 e , 5 f , and 5 p were found to induce apoptosis via upregulation of caspase-3 and caspase-7 proteins as well as by upregulation of the gene expression levels of caspases-3 and -7. Our findings demonstrate that compounds 5 e , 5 f , and 5 p could be potent agents against a number of cancer types.  相似文献   

3.
By using computer modeling and lead structures from our earlier SAR results, a broad variety of pyrrole‐, indole‐, and pyrazole‐based compounds were evaluated as potential fructose 1,6‐bisphosphatase (FBPase) inhibitors. The docking studies yielded promising structures, and several were selected for synthesis and FBPase inhibition assays: 1‐[4‐(trifluoromethyl)benzoyl]‐1H‐indole‐5‐carboxamide, 1‐(α‐naphthalen‐1‐ylsulfonyl)‐7‐nitro‐1H‐indole, 5‐(4‐carboxyphenyl)‐3‐phenyl‐1‐[3‐(trifluoromethyl)phenyl]‐1H‐pyrazole, 1‐(4‐carboxyphenylsulfonyl)‐1H‐pyrrole, and 1‐(4‐carbomethoxyphenylsulfonyl)‐1H‐pyrrole were synthesized and tested for inhibition of FBPase. The IC50 values were determined to be 0.991 and 1.34 μM , and 575, 135, and 32 nM , respectively. The tested compounds were significantly more potent than the natural inhibitor AMP (4.0 μM ) by an order of magnitude; indeed, the best inhibitor showed an IC50 value toward FBPase more than two orders of magnitude better than that of AMP. This level of activity is virtually the same as that of the best currently known FBPase inhibitors. This work shows that such indole derivatives are promising candidates for drug development in the treatment of type II diabetes.  相似文献   

4.
A series of imidazo[2,1‐b][1,3,4]thiadiazole‐linked oxindoles composed of an A, B, C and D ring system were synthesized and investigated for anti‐proliferative activity in various human cancer cell lines; test compounds were variously substituted at rings C and D. Among them, compounds 7 ((E)‐5‐fluoro‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)‐imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), 11 ((E)‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), and 15 ((E)‐6‐chloro‐3‐((6‐phenyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one) exhibited potent anti‐proliferative activity. Treatment with these three compounds resulted in accumulation of cells in G2/M phase, inhibition of tubulin assembly, and increased cyclin‐B1 protein levels. Compound 7 displayed potent cytotoxicity, with an IC50 range of 1.1–1.6 μM , and inhibited tubulin polymerization with an IC50 value (0.15 μM ) lower than that of combretastatin A‐4 (1.16 μM ). Docking studies reveal that compounds 7 and 11 bind with αAsn101, βThr179, and βCys241 in the colchicine binding site of tubulin.  相似文献   

5.
Previously, we reported the identification of a thiazolidinedione‐based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N‐[4‐({3‐[(1‐methylcyclohexyl)methyl]‐2,4‐dioxothiazolidin‐5‐ylidene}methyl)phenyl]‐4‐nitro‐3‐(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial–mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK‐activating activities of individual derivatives revealed a distinct structure–activity relationship and identified 59 (N‐(3‐nitrophenyl)‐N′‐{4‐[(3‐{[3,5‐bis(trifluoromethyl)phenyl]methyl}‐2,4‐dioxothiazolidin‐5‐ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1 , compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT‐associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)‐null PC‐3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN‐negative cancer and warrants continued investigation in this regard.  相似文献   

6.
Several 2‐anilino‐3‐aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU‐145, A549, MDA‐MB‐231, and MCF‐7. Their IC50 values ranged from 0.77 to 23.6 μm . Among the series, compounds 7 f [(4‐fluorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] and 7 g [(4‐chlorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g , respectively, and were much lower than that of the reference compound E7010 [N‐(2‐(4‐hydroxyphenylamino)pyridin‐3‐yl)‐4‐methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V–FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β‐tubulin at the colchicine binding site.  相似文献   

7.
Neuromyelitis optica (NMO) is a demyelinating autoimmune disease of the optic nerve and spinal cord triggered by binding of NMO‐specific immunoglobulin G (NMO‐IgG) auto‐antibodies to the water channel aquaporin‐4 (AQP4) in astrocytes. To find potential NMO therapeutics, a screening system was established and used to identify inhibitors of NMO‐IgG‐mediated complement‐dependent cytotoxicity (CDC). The screening of approximately 400 compounds yielded potent hit compounds with inhibitory effects against CDC in U87‐MG cells expressing human AQP4. Derivatives of the hit compounds were synthesized and evaluated for their inhibition of CDC. Of the small molecules synthesized, (E)‐1‐(2‐((4‐methoxyphenyl)sulfonyl)vinyl)‐[4‐[(3‐trifluoromethyl)phenyl] methoxy]benzene ( 5 c ) showed the most potent activity in both stably transfected U87‐MG cells and mice‐derived astrocytes. The results of this study suggest that 5 c , which targets NMO‐IgG‐specific CDC, may be useful as a research tool and a potential candidate for therapeutic development for the treatment of NMO.  相似文献   

8.
Two novel aromatic tetraamines containing bulky lateral phenyl unit and multiple trifluoromethyl groups, 1,1‐bis[4‐(3′,4′‐diaminophenoxy)phenyl]‐1‐(3″‐trifluoromethylphenyl)?2,2,2‐trifluoroethane (6FTA) and 1,1‐bis[4‐(3′,4′‐diaminophenoxy)phenyl]‐1‐[3″,5″‐bis(trifluoromethyl)phenyl]‐2,2,2‐trifluoroethane (9FTA) were synthesized and characterized. A series of fluorinated aromatic polybenzimidazopyrrolones (polypyrrolones, PPys) were synthesized via a two‐step polycondensation procedure. The inherent viscosities of the precursors, poly(amide amino acid) (PAAA), ranged from 0.39 dL/g to 0.54 dL/g. All the FPPys were amorphous. The freestanding FPPy films could be prepared, which exhibited good thermal stability with the glass transition temperature of 315–389°C, the temperatures of 5% weight loss (T5%) of 497–535°C in nitrogen and residual weight retention at 700°C over 60%. All the FPPy films exhibited excellent alkaline‐hydrolysis resistance which retained their original shapes and toughness after boiling 7 days in 10% sodium hydroxide solution. Also after boiling 8 h in 10% sodium hydroxide solution, the tensile strength could retain as high as 56% of the original values. The alkaline‐hydrolysis resistance was much better than the polyimides which had similar chemical structures. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40041.  相似文献   

9.
Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure–activity relationship study of a small library of ω‐phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5‐bis(trifluoromethyl)phenyl group and the aromatic character of the ω‐phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so‐optimized compounds 2 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(3‐(1,3‐dioxoisoindolin‐2‐yl)propyl)urea] and 21 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(4‐(1,3‐dioxoisoindolin‐2‐yl)butyl)urea] exhibited dissociation constants (Ki) of 1–19 μm on the two CEases and showed either a competitive ( 2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases—monoacylglycerol lipase and fatty acid amide hydrolase—were inhibited by ω‐phthalimidoalkyl aryl ureas to a lesser extent.  相似文献   

10.
Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease–anti‐protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead‐structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY‐678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced‐fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85‐8501 ((4S)‐4‐[4‐cyano‐2‐(methylsulfonyl)phenyl]‐3,6‐dimethyl‐2‐oxo‐1‐[3‐(trifluoromethyl)phenyl]‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85‐8501 is currently being tested in clinical studies for the treatment of pulmonary diseases.  相似文献   

11.
Cancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20‐, 21‐, and 22‐membered macrocycles containing triazole and bis(aryl ether) moieties. The compounds were prepared by a multicomponent approach from readily available commercial substrates. Notably, some of the compounds displayed interesting cytotoxicity against cancer (PC‐3) and breast (MCF‐7) cell lines, especially those bearing an aliphatic or a trifluoromethyl substituent on the N‐phenyl moiety (IC50<13 μm ). Additionally, some of the compounds were able to induce apoptosis relative to the solvent control; in particular, (Z)‐N‐cyclohexyl‐7‐oxo‐6‐[4‐(trifluoromethyl)phenyl]‐11H‐3,10‐dioxa‐6‐aza‐1(4,1)‐triazola‐4(1,3),9(1,4)‐dibenzenacyclotridecaphane‐5‐carboxamide ( 12 f ) was the most potent in this regard (22.7 % of apoptosis).  相似文献   

12.
A series of benzo[b]furans was synthesized with modification at the 5‐position of the benzene ring by introducing C‐linked substituents (aryl, alkenyl, alkynyl, etc.). These compounds were evaluated for their antiproliferative activities, inhibition of tubulin polymerization, and cell‐cycle effects. Some compounds in this series displayed excellent activity in the nanomolar range against lung cancer (A549) and renal cell carcinoma (ACHN) cancer cell lines. (6‐Methoxy‐5‐((4‐methoxyphenyl)ethynyl)‐3‐methylbenzofuran‐2‐yl)(3,4,5‐trimethoxyphenyl)methanone ( 26 ) and (E)‐3‐(6‐methoxy‐3‐methyl‐2‐(1‐(3,4,5‐trimethoxyphenyl)vinyl)benzofuran‐5‐yl)prop‐2‐en‐1‐ol ( 36 ) showed significant activity in the A549 cell line, with IC50 values of 0.08 and 0.06 μM , respectively. G2/M cell‐cycle arrest and subsequent apoptosis was observed in the A549 cell line after treatment with these compounds. The most active compound in this series, 36 , also inhibited tubulin polymerization with a value similar to that of combretastatin A‐4 (1.95 and 1.86 μM , respectively). Furthermore, detailed biological studies such as Hoechst 33258 staining, DNA fragmentation and caspase‐3 assays, and western blot analyses with the pro‐apoptotic protein Bax and the anti‐apoptotic protein Bcl‐2 also suggested that these compounds induce cell death by apoptosis. Molecular docking studies indicated that compound 36 interacts and binds efficiently with the tubulin protein.  相似文献   

13.
Several CF3Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates ( 5 a / 6 a ), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates ( 5 b / 6 b ), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates ( 5 c / 6 c ), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates ( 11 a / 12 a ), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates ( 11 b / 12 b ), were readily synthesized from natural amino acids and [Me4N][SeCF3]. The primary in vitro cytotoxicity assays revealed that compounds 6 a , 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 μM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.  相似文献   

14.
Herein we report the discovery of compound 6 [KST016366; 4‐((2‐(3‐(4‐((4‐ethylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)ureido)benzo[d]thiazol‐6‐yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A . In vitro anticancer evaluation of 6 showed substantial broad‐spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K‐562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar‐level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL‐1 (wild‐type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

15.
Some readily available Boc‐protected 2‐(3‐methoxy‐1‐propynyl)anilines and nitrones in platinum‐catalyzed reactions deliver [1,2]oxazino[5,4‐b]indoles. Twelve examples with yields of 41–95% are reported. Different substituents like nitro, trifluoromethyl, fluoro, bromo, and ester groups are tolerated. With regard to the mechanism, this reaction probably combines an initial intramolecular cyclization/elimination to vinylcarbenoid species and a subsequent stepwise intermolecular [3+3] cycloaddition with the nitrones.  相似文献   

16.
We report the synthesis and photolytic properties of caged inorganic phosphates (Pi compounds) based on the 2‐(4′‐{bis[2‐(2‐methoxyethoxy)ethyl]amino}‐4‐nitro‐[1,1′‐biphenyl]‐3‐yl)propan‐1‐ol (EANBP) and 7‐(diethylamino)coumarin‐4‐yl]methyl (DEACM) protecting groups. The EANBP‐Pi showed unprecedented photolysis efficiency at 405 nm, with 95 % release of free phosphate and a quantum yield of 0.28. Thanks to the high two‐photon sensitivity of the EANBP chromophore, Pi release through two‐photon photolysis is also possible, with an action cross section of 20.5 GM at 800 nm. Two bioactivatable acetoxymethyl protection groups were added to the “caged‐Pi” compounds. The resulting triesters of phosphoric acid were able to diffuse through the cellular membranes of plant cells. Once inside a cell, the cleavage of these biocleavable motifs by intracellular esterases allows intracellular accumulation of EANBP‐Pi. Bis(AM)‐EANBP‐Pi therefore represents a very attractive tool for study of the Pi signal transduction cascade in living cells.  相似文献   

17.
In this work, we report the antileishmanial activity of 23 compounds based on 2‐pyrazyl and 2‐pyridylhydrazone derivatives. The compounds were tested against the promastigotes of Leishmania amazonensis and L. braziliensis, murine macrophages, and intracellular L. amazonensis amastigotes. The most potent antileishmanial compound was selected for investigation into its mechanism of action. Among the evaluated compounds, five derivatives [(E)‐3‐((2‐(pyridin‐2‐yl)hydrazono)methyl)benzene‐1,2‐diol ( 2 b ), (E)‐4‐((2‐(pyridin‐2‐yl)hydrazono)methyl)benzene‐1,3‐diol ( 2 c ), (E)‐4‐nitro‐2‐((2‐(pyrazin‐2‐yl)hydrazono)methyl)phenol ( 2 s ), (E)‐2‐(2‐(pyridin‐2‐ylmethylene)hydrazinyl)pyrazine ( 2 u ), and (E)‐2‐(2‐((5‐nitrofuran‐2‐yl)methylene)hydrazinyl)pyrazine ( 2 v )] exhibited significant activity against L. amazonensis amastigote forms, with IC50 values below 20 μm . The majority of the compounds did not show any toxic effect on murine macrophages. Preliminary studies on the mode of action of members of this hydrazine‐derived series indicate that the accumulation of reactive oxygen species (ROS) and disruption of parasite mitochondrial function are important for the pharmacological effect on L. amazonensis promastigotes.  相似文献   

18.
In this article, we describe the synthesis of two azobenzene and two stilbene‐based diacetylene chromophores containing terminal electron‐donating (? OCH3) and electron‐withdrawing (? NO2) terminal groups with esterification reactions. The target compounds were characterized by NMR, X‐ray diffraction (XRD), absorption, and photoluminescence spectroscopies. We investigated the structural effects of these photochromic compounds on the E–Z photoisomerization and 1,4‐addition under UV irradiation. 4‐[(4‐Nitrophenyl)‐diazenyl]phenyl pentacosa‐10,12‐diynoate, incorporating the electron‐withdrawing nitro group (? NO2), underwent the fastest rate of Z‐to‐E isomerization in darkness via a rotation mechanism. Our results demonstrate that self‐assembled azobenzene Z isomers exhibited enhanced fluorescence under UV irradiation. XRD spectroscopy identified bilayer packing by the polydiacetylene films after 1,4‐addition. Chromophores comprising the diacetylene group presented moderate photochromic stability upon 1,4‐addition, changing from their original yellowish color to form a blue phase. These synthesized compounds may be useful in the development of new and unique functional materials that exhibit bistable photochromism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The CXCR3 receptor, a class A G protein‐coupled receptor (GPCR), is involved in the regulation and trafficking of various immune cells. CXCR3 antagonists have been proposed to be beneficial for the treatment of a wide range of disorders including but not limited to inflammatory and autoimmune diseases. The structure‐based design of CXCR3 ligands remains, however, hampered by a lack of structural information describing in detail the interactions between an allosteric ligand and the receptor. We designed and synthesized photoactivatable probes for the structural and functional characterization, using photoaffinity labeling followed by mass spectrometry, of the CXCR3 allosteric binding pocket of AMG 487 and RAMX3, two potent and selective CXCR3 negative allosteric modulators. Photoaffinity labeling is a common approach to elucidate binding modes of small‐molecule ligands of GPCRs through the aid of photoactivatable probes that convert to extremely reactive intermediates upon photolysis. The photolabile probe N‐[({1‐[3‐(4‐ethoxyphenyl)‐4‐oxo‐3,4‐dihydropyrido[2,3‐d]pyrimidin‐2‐yl]ethyl}‐2‐[4‐fluoro‐3‐(trifluoromethyl)phenyl]‐N‐{1‐[4‐(3‐(trifluoromethyl)‐3H‐diazirin‐3‐yl]benzyl}piperidin‐4‐yl)methyl]acetamide ( 10 ) showed significant labeling of the CXCR3 receptor (80 %) in a [3H]RAMX3 radioligand displacement assay. Compound 10 will serve as an important tool compound for the detailed investigation of the binding pocket of CXCR3 by mass spectrometry.  相似文献   

20.
Three types of N[4‐(N‐substituted amino carbonyl)phenyl] maleimide (RPhMI:N‐substituent (R) = phenyl, cyclohexyl, p‐chlorophenyl) were grafted onto poly(vinyl chloride) (PVC) films by using gamma irradiation. The effects of different parameters on the graft yield were investigated. These parameters included radiation dose and monomer concentration. Thermal properties of the grafted polymer were investigated by the determination of dehydrochlorination rate, thermal gravimetric behavior, and UV stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号