首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GaAs metal-oxide-semiconductor field-effect transistors (MOSFETs) using wet thermally oxidized InAlP as the gate insulator are reported for the first time. Leakage current measurements show that the 11-nm-thick native oxide grown from an In/sub 0.49/Al/sub 0.51/P layer lattice-matched to GaAs has good insulating properties, with a measured leakage current density of 1.39/spl times/10/sup -7/ mA//spl mu/m/sup 2/ at 1 V bias. GaAs MOSFETs with InAlP native gate oxide have been fabricated with gate lengths from 7 to 2 /spl mu/m. Devices with 2-/spl mu/m-long gates exhibit a peak extrinsic transconductance of 24.2 mS/mm, an intrinsic transconductance of 63.8 mS/mm, a threshold voltage of 0.15 V, and an off-state gate-drain breakdown voltage of 21.2 V. Numerical Poisson's equation solutions provide close agreement with the measured sheet resistance and threshold voltage.  相似文献   

2.
Quantum-well p-channel pseudomorphic AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with enhanced hole mobility are described. The devices exhibit room-temperature transconductance, transconductance parameter, and maximum drain current as high as 113 mS/mm, 305 mS/V/mm, and 94 mA/mm, respectively, in 0.8-μm-gate devices. Transconductance, transconductance parameter, and maximum drain current as high as 175 mS/mm, 800 mS/V/mm, and 180 mA/mm, respectively were obtained in 1-μm p-channel devices at 77 K. From the device data hole field-effect mobilities of 860 cm2/V-s at 300 K and 2815 cm2/V-s at 77 K have been deduced. The gate current causes the transconductance to drop (and even to change sign) at large voltage swings. Further improvement of the device characteristics may be obtained by minimizing the gate current. To this end, a type of device structure called the dipole heterostructure insulated-gate field-effect transistor is proposed  相似文献   

3.
Silicon donors have been implanted through the gate and into the (Al,Ga)As insulator of a GaAs SISFET structure in order to produce a negative shift in the device threshold voltage in selective areas of the wafer. The depletion-mode devices fabricated in this manner have controllable threshold voltage, high transconductance (350 mS/mm at 300 K and 380 mS/mm at 77 K for 1-µm gate-length devices), and low gate leakage characteristics. Such devices are suitable for enhance-deplete GaAs SISFET logic circuits.  相似文献   

4.
The fabrication and performance of 0.25- mum gate length GaAs-channel MOSFETs using the wet thermal native oxide of InAlP as the gate dielectric are reported. A fabrication process that self-aligns the gate oxidation to the gate recess and metallization to reduce the source access resistance is demonstrated for the first time. The fabricated devices exhibit a peak extrinsic transconductance of 144 mS/mm, an on-resistance of 3.46 Omega-mm, and a threshold voltage of -1.8 V for typical 0.25 -mum gate devices. A record cutoff frequency of 31 GHz for a GaAs-channel MOSFET and a maximum frequency of oscillation fmax of 47 GHz have also been measured.  相似文献   

5.
We successfully fabricated submicron depletion-mode GaAs MOSFETs with negligible hysteresis and drift in drain current using Ga2 O3(Gd2O3) as the gate oxide. The 0.8-μm gate-length device shows a maximum drain current density of 450 mA/mm and a peak extrinsic transconductance of 130 mS/mm. A short-circuit current gain cutoff frequency (fT) of 17 GHz and a maximum oscillation frequency (fmax) of 60 GHz were obtained from the 0.8 μm×60 μm device. The absence of drain current drift and hysteresis along with excellent characteristics in the submicron devices is a significant advance toward the manufacture of commercially useful GaAs MOSFETs  相似文献   

6.
An enhancement-mode insulated-gate field-effect transistor (FET) has been fabricated by a self-aligned technique on semi-insulating InP substrate with an AlGaAs gate barrier grown by molecular beam epitaxy (MBE). A device with a gate length of 1 µm exhibited a transconductance of 134 mS/mm and a threshold voltage of 0.9 V. The characteristics are insensitive to light down to 77 K and hysteresis is completely absent. The performance of this device shows that the fabrication of enhancement-mode devices on severely lattice-mismatched heterostructures is feasible.  相似文献   

7.
An anisotype heterojunction field-effect transistor (A-HJFET) for GaAs digital integrated circuit applications is proposed. A thin, highly doped, strained InxGa1-xAs (x⩽0.2) n-channel is employed for improved transconductance while a p+-GaAs cap is used to enhance the dynamic gate voltage range of the device. Prototype devices with 5-μm gate lengths show a maximum transconductance of 80 mS/mm at Vds=2 V and a forward gate bias voltage of up to +2 V without significant leakage current  相似文献   

8.
单片集成GaAs增强/耗尽型赝配高电子迁移率晶体管   总被引:1,自引:0,他引:1  
介绍了单片集成GaAs增强/耗尽型赝配高电子迁移率晶体管(PHEMT)工艺。借助栅金属的热处理过程,形成了热稳定性良好的Pt/Ti/Pt/Au栅。AFM照片结果表明Pt金属膜表面非常平整,2nm厚度膜的粗糙度RMS仅为0.172nm。通过实验,我们还得出第一层Pt金属膜的厚度和退火后的下沉深度比大概为1:2。制作的增强型/耗尽型PHEMT的闽值电压(定义于1mA/mm)、最大跨导、最大饱和漏电流密度、电流增益截止频率分别是+0.185/-1.22V、381.2/317.5mS/mm、275/480mA/mm、38/34GHz。增强型器件在4英寸圆片上的阈值电压标准差为19mV。  相似文献   

9.
Multiple-channel high electron mobility transistors (HEMT's) have been designed and fabricated on GaAs/AlGaAs heterostructural material grown by molecular beam epitaxy (MBE). The sheet carrier density of the two-dimensional electron gas (2-DEG) measured at 77 K was linearly proportional to the number of high mobility electron channels, and reached 5.3 × 1012cm-2for six-channel HEMT structures. Depletion-mode devices of the double-heterojunction HEMT were operated between negative pinchoff voltage and forward-biased gate voltage without any transconductance degradation. A peak extrinsic transconductance of 360 mS/mm at 300 K and 550 mS/mm at 77 K has been measured for a 1-µm gate-length double-heterojunction enhancement-mode device. An extremely high drain current of 800 mA/mm with a gate-to-drain avalanche breakdown voltage of 9 V was measured on six-channel devices.  相似文献   

10.
GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition   总被引:1,自引:0,他引:1  
For the first time, a III-V compound semiconductor MOSFET with the gate dielectric grown by atomic layer deposition (ALD) is demonstrated. The novel application of the ALD process on III-V compound semiconductors affords tremendous functionality and opportunity by enabling the formation of high-quality gate oxides and passivation layers on III-V compound semiconductor devices. A 0.65-/spl mu/m gate-length depletion-mode n-channel GaAs MOSFET with an Al/sub 2/O/sub 3/ gate oxide thickness of 160 /spl Aring/ shows a gate leakage current density less than 10/sup -4/ A/cm/sup 2/ and a maximum transconductance of 130 mS/mm, with negligible drain current drift and hysteresis. A short-circuit current-gain cut-off frequency f/sub T/ of 14.0 GHz and a maximum oscillation frequency f/sub max/ of 25.2 GHz have been achieved from a 0.65-/spl mu/m gate-length device.  相似文献   

11.
Integration of Si MOSFET's and GaAs MESFET's on a monolithic GaAs/Si (MGS) substrate has been demonstrated. The GaAs MESFET's have transconductance of 150 mS/mm for a gate length of 1 µm, and the Si MOSFET's have transconductance of 19 mS/mm for a gate length of 5 µm and an oxide thickness of 800 Å. These characteristics are comparable to those for devices fabricated on separate GaAs and Si substrates.  相似文献   

12.
High-performance E-mode AlGaN/GaN HEMTs   总被引:1,自引:0,他引:1  
Enhancement-mode AlGaN/GaN high electron-mobility transistors have been fabricated with a gate length of 160 nm. The use of gate recess combined with a fluorine-based surface treatment under the gate produced devices with a threshold voltage of +0.1 V. The combination of very high transconductance (> 400 mS/mm) and low gate leakage allows unprecedented output current levels in excess of 1.2 A/mm. The small signal performance of these enhancement-mode devices shows a record current cutoff frequency (f/sub T/) of 85 GHz and a power gain cutoff frequency (f/sub max/) of 150 GHz.  相似文献   

13.
GaAs MESFET's with a gate length as low as 0.2 μm have been successfully fabricated with Au/WSiN refractory metal gate n+-self-aligned ion-implantation technology. A very thin channel layer with high carrier concentration was realized with 10-keV ion implantation of Si and rapid thermal annealing. Low-energy implantation of the n+-contact regions was examined to reduce substrate leakage current. The 0.2-μm gate-length devices exhibited a maximum transconductance of 630 mS/mm and an intrinsic transconductance of 920 mS/mm at a threshold voltage of -0.14 V  相似文献   

14.
In this letter, 1-mum GaAs-based enhancement-mode n-channel devices with channel mobility of 5500 cm2/Vmiddots and g m exceeding 250 mS/mm have been fabricated. The measured device parameters including threshold voltage Vth, maximum extrinsic transconductance gm, saturation current Idss , on-resistance Ron, and gate current are 0.11 V, 254 mS/mm, 380 mA/mm, 4.5 Omegamiddotmm, and < 56 pA for a first wafer and 0.08 V, 229 mS/mm, 443 mA/mm, 4.5 Omegamiddotmm, and < 90 pA for a second wafer, respectively. With an intrinsic transconductance gmi of 434 mS/mm, GaAs enhancement-mode MOSFETs have reached expected intrinsic device performance  相似文献   

15.
报道了用 MBE技术生长的 Ga As基 In Al As/In Ga As改变结构高电子迁移率晶体管 (MHEMT)的制作过程和器件的直流性能。对于栅长为 0 .8μm的器件 ,最大非本征跨导和饱和电流密度分别为 3 5 0 m S/mm和1 90 m A/mm。源漏击穿电压和栅反向击穿电压分别为 4V和 7.5 V。这些直流特性超过了相同的材料和工艺条件下 Ga As基 PHEMT的水平 ,与 In P基 In Al As/In Ga As HEMT的性能相当  相似文献   

16.
Excellent uniformity in the threshold voltage, transconductance, and current-gain cutoff frequency of InAlAs/InGaAs/InP MODFETs has been achieved using a selective wet gate recess process. An etch rate ratio of 25 was achieved for InGaAs over InAlAs using a 1:1 citric acid:H2O2 solution. By using this solution for gate recessing, the authors have achieved a threshold voltage standard deviation of 15 mV and a transconductance standard deviation of 15 mS/mm for devices across a quarter of a 2-in-diameter wafer. The average threshold voltage, transconductance, and current-gain cutoff frequency of 1.0-μm gate-length devices were -234 mV, 355 mS/mm, and 32 GHz, respectively  相似文献   

17.
A new process, electron cyclotron resonance (ECR) microwave plasma oxidation, has been developed to produce a gate-quality oxide directly on SiGe alloys. One μm Al gate Si0.86Ge0.15 p-metal-oxide-semiconductor field-effect-transistors (pMOSFET's) with ECR-grown gate oxide have been fabricated. It is found that saturation transconductance increases from 48 mS/mm at 300 K to 60 mS/mm at 77 K. Low field hole mobilities of 167 cm2/V-s at 300 K and 530 cm 2/V-s at 77 K have been obtained  相似文献   

18.
描述了高电子迁移率晶体管的作用、工作原理及发展概况,叙述了器件特性。制作出了栅长为1μm的PHEMT样品,它的最大跨导为170mS/mm,击穿电压为4V,最大电流密度为270mA/mm,阈值电压为1.5V。  相似文献   

19.
n- and p-channel InGaP/InGaAs doped-channel pseudomorphic HFETs on the identical chip by selectively etching process are first demonstrated. Particularly, the saturation voltage of the n-channel device is relatively small because 2DEG is formed and modulated in the InGaAs strain channel. Experimentally, an extrinsic transconductance of 292 (72) mS/mm and a saturation current density of 335 (-270) mA/mm are obtained for the n-channel (p-channel) device. Furthermore, the integrated devices exhibit broad gate voltage swings for linear and signal amplifier applications.  相似文献   

20.
Buried p-buffer double heterostructure modulation-doped field-effect transistors (BP DH-MODFETs) with an InGaAs quantum-well channel were fabricated with high transconductance and good breakdown voltage, by placing the metal gate directly on Fe-doped InP insulating layer. Excellent extrinsic DC transconductance of 560 mS/mm and a high gate-to-drain diode breakdown voltage (greater than 20 V) were achieved at room temperature with FETs of 1.2-μm gate length. Unity currently gain cutoff frequency fT of 24 GHz and maximum oscillation frequency fmax of 60 GHz were demonstrated for a drain to source voltage VDS=4 V, which corresponds to an average electron velocity of 2.2×107 cm/s in the quantum well  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号