首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic decolorization of azo-dye Orange II in water has been examined in an external UV light irradiation slurry photoreactor using zinc oxide (ZnO) as a semiconductor photocatalyst. The effects of process parameters such as light intensity, initial dye concentration, photocatalyst loading and initial solution pH on the decolorization rate of Orange II have been systematically investigated. A two-stage photocatalytic decolorization of Orange II, the first stage of fast decolorization rate and the subsequent second stage of rather slow decolorization rate, was found. The efficiency of decolorization of Orange II increased as initial Orange II concentration decreased and UV light intensity increased. There was the optimal ZnO concentration being around 1000 mg L(-1). The optimal pH was around 7.7, which was at the natural pH of the dye solution. The effect of aeration rate on the decolorization of Orange II has been also investigated and the enhancement of decolorization of Orange II with increasing aeration rate was found. By using a model for the light intensity profile in the external UV light irradiation slurry photoreactor, the simulation model for the decolorization of Orange II with ZnO photocatalyst has been developed. The proposed model in which the slow decolorization in the second stage as well as the initial fast decolorization is also taken into account could simulate the experimental results for UV light irradiation satisfactorily. The proposed simulation model in which the change of light intensity with time due to the decolorization of Orange II and the light scatter due to solid photocatalysts are considered will be very useful for practical engineering design of the slurry photoreactor of wastewater including textile dyes.  相似文献   

2.
The UV radiation assisted photocatalytic decolorization/degradation kinetics of an anionic dye erythrosine (ER), has been studied over TiO2 and ZnO surfaces. Since adsorption is the prerequisite condition for decolorization/degradation of dye molecules in presence of heterogeneous catalysis, the Langmuir and Freundlich isotherms were examined to verify the adsorption intensity. Standard adsorption free energy measurement implies that the adsorption of ER on both TiO2 and ZnO surfaces is spontaneous endothermic process. The effect of catalyst loading (TiO2/ZnO) revealed the fact that the maximum decolorization rate is obtained under an optimized catalyst loading condition. The decolorization efficiency was also investigated over the pH range of 5.0-10.0 indicating that increasing pH enhances decolorization efficiency. The influence of H2O2 on decolorization efficiency was found noticeable since it is a hydroxyl radical provider. The kinetic study of this degradation indicates that under the experimental condition, the decolorization mechanism follows zero order kinetics on the basis of Langmuir-Hinshelwood (L-H) heterogeneous reaction mechanism.  相似文献   

3.
Photocatalytic degradation of Remazol Red F3B using ZnO catalyst   总被引:9,自引:0,他引:9  
The photocatalytic degradation of aqueous solution of a commercial azo-reactive textile dye, Remazol Red F3B, has been investigated in a batch slurry reactor, in the presence of ZnO catalyst using two different UV light sources emitting at 254 nm and 365 nm. The effects of various process variables on degradation performance of the process have been investigated. The results showed that decolourization and total organic carbon (TOC) removal are both affected in the same manner by the solution pH in the pH range 6-10, showing maxima at pH 7 and pH 10. They are inversely related to the dye concentration, they increase in power-law with the light intensity. Decolourization is faster with 365 nm UV. TOC removal is not affected by UV wavelength in the initial period up to 20 min, after which it progresses faster under 365 nm UV radiation. These results indicate that the UV wavelength influences especially the degradation rate of the intermediate products generated during the initial period of the photocatalytic process. Finally, catalyst loading affects both efficiencies in the same trend, which are maximized at about 2 g/l catalyst loading.  相似文献   

4.
The photocatalytic degradation of C.I. Direct Red 23 (4BS) in aqueous solutions under UV irradiation was investigated with SrTiO3/CeO2 composite as the catalyst. The SrTiO3/CeO2 powders had more photocatalytic activity for decolorization of 4BS than that of pure SrTiO3 powder under UV irradiation. The effects of catalytic dose, pH value, initial concentration of dye, irradiation intensity as well as scavenger KI were ascertained, and the optimum conditions for maximum degradation were determined. Under the irradiation of a 250 W mercury lamp, the best catalytic dose was 1.5 g/L and the best pH was 12.0. Light intensity exhibited a significant positive effect on the efficiency of decolorization, whereas the initial dye concentration showed a significant negative effect. Under the conditions of a catalytic dose of 1.5 g/L, pH of 12.0, initial dye concentration of 100mg/L, light intensity of 250 W, and air flow rate of 0.15 m3/h, complete decolorization, as determined by UV-visible analysis, was achieved in 60 min, corresponding to a reduction in chemical oxygen demand (COD) of 69% after a 240 min reaction. A tentative degradation pathway based on the sensitization mechanism of photocatalysis is proposed.  相似文献   

5.
In this paper, we found that the acidic and basic dyes were easily decolorized by a bis-ions coexistence system of NH(4)(+) and NO(3)(-) under UV light irradiation. The coexistence of NH(4)(+) and NO(3)(-) is a necessary condition for the photocatalytic decolorization of soluble dyes. The photocatalytic decolorization of methyl orange (MO) and methylene blue (MB) follows the first order rate kinetics. The location of an absorption peak in the visible region is blue-shifted with the increase in the illumination time. It is proposed that the photocatalytic decolorization of soluble dyes in the bis-ions coexistence system of NH(4)(+) and NO(3)(-) is a photoreduction reaction, in which the ammonium nitrate acts as a photocatalyst. The chromophore of acidic and basic dyes reacts with hydrogen and then results in their rapid decolorization.  相似文献   

6.
Solar/UV-induced photocatalytic degradation of three commercial textile dyes.   总被引:12,自引:0,他引:12  
The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.  相似文献   

7.
The photocatalytic degradation of lignin obtained from wheat straw kraft digestion has been investigated by using TiO(2) and ZnO semiconductors. ZnO has been found to be a better photocatalyst than TiO(2). The different variables studied, include catalyst dose, solution pH, oxidant concentration and initial concentration of the substrate. The degradation of lignin was favorable at pH 11. Optimum values of catalyst dose and oxidant concentration were found to be 1g/l and 12.2 x 10(-6) M, respectively. The degradation of the organic compound was also evaluated as COD removal and increase in the COD removal was observed with increase in degradation rate. An attempt has also been made to explore the applicability of ZnO in immobilized mode for the degradation of lignin under solar light for industrial scale application. Further the comparative evaluation of ZnO in slurry/immobilized mode has been carried out.  相似文献   

8.
An attempt was made to prepare Cd-doped ZnO photocatalyst for visible light assisted degradation of a textile dye (methylene blue, MB) in aqueous solutions by a traditional sol–gel process. The as-prepared nanoparticles were characterized by X-ray diffraction, UV–vis diffuse reflectance spectroscopy, and photoluminescence spectra techniques. The results showed that the Cd-doped ZnO possess the single-phase hexagonal wurtzite structure. The photocatalytic activity of the nanoparticles under visible light was investigated by measuring the photodegradation of MB in aqueous dispersion. The effects of key operation parameters such as initial dye concentration, catalyst loading as well as initial pH value on the decolorization extents were investigated. The results indicate that the decolorization of the organic molecule followed a pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Under the optimum operation conditions, approximately 85.0% dye removal was achieved within 3.5 h.  相似文献   

9.
This study discusses the effects of ultrasound (US) irradiation on the decolorization of C.I. Reactive Red 198 (RR198) in UV/ZnO system. The influences of ZnO dosage, pH and the addition of NaCl or a radical scavenger were evaluated. The decolorization rate of RR198 increased with the ZnO dosage in 0.1-1g/l and with pH in the UV/ZnO system. US accelerated the decolorization of RR198 in the UV-based system. The enhancement in the presence of NaCl can be attributed to an increase in the partitioning of RR198 upon cavitation implosion in US/ZnO system. At pH 7, the decolorization rate constants of UV/US/ZnO, UV/ZnO, US/ZnO, UV/US and US were 0.0739, 0.0534, 0.0022, 0.0020 and 0.0013 min(-1), respectively. The decolorization rate was effectively inhibited by adding 1-butanol to UV/ZnO and UV/US/ZnO systems, suggesting that the main mechanism of RR198 destruction is chemical oxidation by hydroxyl radicals in the bulk liquid. The experimental results revealed that the UV/US/ZnO system cannot only completely decolorize RR198 but can effectively mineralize RR198.  相似文献   

10.
Nanocomposite material ZnAl2O4/ZnO was prepared via layered double hydroxides co-precipitation method in the presence of triblock copolymer, Pluronic F127 as the template with different concentrations at pH 7. The material was characterized by XRD, N2 adsorption/desorption, UV–Vis diffused reflectance, TGA–DTA and SEM. XRD and SEM results reveal that ZnAl2O4/ZnO was highly ordered nanocrystalline material. N2 adsorption/desorption studies indicate that the pore size and pore volume increased significantly with the increase in concentration of F127 copolymer template, while the surface area is slightly decreased with increase of F127 template. TGA–DTA results reveal that the thermal stability of material increased after adding F127 template. The material was tested for its photocatalytic activity for a solution containing methyl orange dye and the 95.6% decolorization was achieved within 1 h. The intensive absorption light observed by UV–Vis reflectance of the catalyst confirmed high activity of the catalyst and suggest the probable photocatalytic degradation mechanism.  相似文献   

11.
Natural sphalerite, which represents a new class of mineral-based catalyst, was characterized and investigated for photo-reduction of an azo dye methyl orange (MO) under visible light. After 2 h of visible light irradiation, a complete decolorization of the MO solution was achieved. The degradation rate was related to the pH conditions. Spectra from FT-IR analysis indicate an initial adsorption of MO to sphalerite via its sulfonate group. Further reduction of the adsorbed MO by sphalerite under light irradiation led to the destruction of the azo structure, as indicated by the results from UV–vis, FT-IR and ESI-MS analyses. The visible light-induced photocatalytic reductive activity of natural sphalerite was mainly attributed to the distribution of foreign metal atoms in its crystal lattice, which reduces the intrinsic bandgap of sphalerite and also broadens its spectra responding range. In addition, the high conduction band potential of natural sphalerite may also enhance the photo-reduction of MO.  相似文献   

12.
采用水热合成法制备ZnO纳米棒及RGO/ZnO纳米棒复合材料。研究不同含量的RGO对RGO/ZnO纳米棒复合材料光催化活性的影响。采用X射线衍射仪(XRD)、场发射电子显微镜(FESEM)、光电子能谱仪(XPS)及漫反射紫外-可见吸收光谱(UV-Vis)检测手段对RGO/ZnO进行表征。结果显示:RGO与ZnO纳米棒成功复合。加入GO的含量不同,获得的RGO/ZnO样品在可见光区域的吸光度值不同。以甲基橙作为模拟污染物的光催化结果表明,RGO/ZnO复合材料具有高的紫外-可见光光降解效率,加入GO与ZnO的质量比为3%时,样品紫外-可见光光催化性能最佳,120min内甲基橙基本可以完全降解;且在波长大于400nm可见光照射下,RGO/ZnO具有一定的可见光活性,180min内其降解甲基橙效率最大可达26.2%。同时,RGO/ZnO具有较好的光稳定性。  相似文献   

13.
The removal of C.I. Acid Orange 7 (AO7) from aqueous solution under UV irradiation in the presence of ZnO nanopowder has been studied. The average crystallite size of ZnO powder was determined from XRD pattern using the Scherrer equation in the range of 33 nm. The experiments showed that ZnO nanopowder and UV light had a negligible effect when they were used on their own. The effects of some operational parameters such as pH, the amount of ZnO nanopowder and initial dye concentration were also examined. The photodegradation of AO7 was enhanced by the addition of proper amount of hydrogen peroxide, but it was inhibited by ethanol. From the inhibitive effect of ethanol, it was deducted that hydroxyl radicals played a significant role in the photodegradation of the dye. The kinetic of the removal of AO7 can be explained in terms of the Langmuir-Hinshelwood model. The values of the adsorption equilibrium constant, K(AO7), and the kinetic rate constant of surface reaction, k(c), were 0.354(mg l(-1))(-1) and 1.99 mg l(-1)min(-1), respectively. The electrical energy consumption per order of magnitude for photocatalytic degradation of AO7 was lower in the UV/ZnO/H(2)O(2) process than that in the UV/ZnO process. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 60 min.  相似文献   

14.
We report photocatalytic degradation studies on Navy Blue HE2R (NB) dye on significant details as a representative from the class of azo dyes using functional nanosystems specifically designed to allow a strong photocatalytic activity. A modified sol-gel route was employed to synthesize Au and gamma-Fe2O3 modified TiO2 nanoparticles (NPs) at low temperature. The attachment strategy is better because it allows clear surface of TiO2 to remain open for photo-catalysis. X-ray diffraction, Raman and UV-VIS spectroscopy studies showed the presence of gold and iron oxide phases along-with the anatase TiO2 phase. TEM studies showed TiO2 nanocomposite particles of size approximately 10-12 nm. A detailed investigation on heterogeneous photocatalytic performance for Navy Blue HE2R dye was done using the as-synthesized catalysts Au:TiO2 and gamma-Fe2O3:TiO2 in aqueous suspension under 8 W low-pressure mercury vapour lamp irradiation. Also, the photocatalytic degradation of Amranth and Orange G azo dyes were studied. The surface modified TiO2 NPs showed significantly improved photocatalytic activity as compared to pure TiO2. Exposure of the dye to the UV light in the presence of pure and gold NPs attached TiO2 catalysts caused dye degradation of about approximately 20% and approximately 80%, respectively, in the first couple of hours. In the presence of gamma-Fe2O3 NPs attached TiO2, a remarkable approximately 95% degradation of the azo dye was observed only in the first 15 min of UV exposure. The process parameters for the optimum catalytic activity are established which lead to a complete decoloration and substantial dye degradation, supported by the values of the Chemical Oxygen Demand (COD) approximately 93% and Total Organic Carbon (TOC) approximately 65% of the treated dye solution after 5 hours on the employment of the UV/Au:TiO2/H2O2 photocatalytic process.  相似文献   

15.
Ji F  Li C  Zhang J  Deng L 《Journal of hazardous materials》2011,186(2-3):1979-1984
Heterogeneous photo-Fenton process using LiFe(WO(4))(2) as catalyst was studied to degrade Methylene blue (MB) dye in aqueous solution. The results indicated that LiFe(WO(4))(2) could effectively catalyze the decolorization of MB in the presence of UV light and H(2)O(2). The effects of different parameters such as amounts of catalyst, H(2)O(2) concentration, initial pH of the dye solution, initial dye concentration and UV light intensity on the decolorization efficiency of the process were investigated. It was found that LiFe(WO(4))(2) possessed a wide applicable pH range. X-ray photoelectron spectroscopy (XPS) was applied to investigate the transformation between Fe(III) and Fe(II). It was also observed that catalytic behavior could be reproduced in consecutive experiments without a considerable drop in the process efficiency.  相似文献   

16.
FeVO_4光催化剂降解甲基橙研究   总被引:9,自引:0,他引:9  
实验采用液相沉淀法制备了三斜型FeVO4光催化剂,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)等方法对样品结构和形貌进行分析和表征,在40W紫外灯(主波长为253.7nm)照射下降解一定浓度的甲基橙溶液,研究其对甲基橙溶液降解效果.研究了催化剂用量、甲基橙初始浓度、光强度及pH值对甲基橙降解率的影响.  相似文献   

17.
In this article we report a chemical sol–gel approach to synthesize zinc oxide nanomaterials capped with ethylene diamine tetra acetic acid (EDTA), citric acid and oleic acid, and to study the effect of the surface modification on their photocatalytic activity and the kinetics for the degradation of Malachite Green (MG) dye. The structural, optical and chemical features were systematically characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared and UV–vis absorption spectroscopy. The objective of using the capping agents was to confine the size and control the growth and morphology of the nanomaterial. The smallest crystallite size was recorded as 29 nm for EDTA-capped rod-shaped ZnO. A comparison study of the effect of the three different capping surfactants on ZnO nanomaterial for photocatalytic degradation of MG dye under solar light showed that EDTA with higher denticity coordinated efficiently with the surface of ZnO nanocrystalline catalysts and hence demonstrated better decolouration of the dye under solar light. The dye degradation followed the psuedo-first-order kinetics. EDTA proved to be the best capping agent among all the three for ZnO nanomaterial.  相似文献   

18.
Zinc oxide (ZnO) nanoparticles were synthesized by a reaction between an aqueous-alcoholic solution of zinc nitrate and sodium hydroxide under ultrasonic irradiation at room temperature. The morphology, optical properties of the ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The [60]fullerene and zinc oxide nanocomposite were synthesized in an electric furnace at 700 degrees C for two hours. The [60]fullerene-ZnO nanocomposite was characterized by XRD, SEM and TEM. In addition, the [60]fullerene-ZnO nanocomposite was investigated as a catalyst in the photocatalytic degradation of organic dyes using UV-vis spectroscopy. The photocatalytic activity of the [60]fullerene-ZnO nanocomposite was compared with that of ZnO nanoparticles, heated ZnO nanoparticles after synthesis, pure [60]fullerene, and heated pure [60]fullerene in organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 254 nm.  相似文献   

19.
The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV–visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail.  相似文献   

20.
The Zr co-doped Ag–ZnO (Zr–Ag–ZnO) was successfully synthesized by precipitation–decomposition method. The photocatalytic activity of Zr–Ag–ZnO was investigated for the degradation of Acid Black 1 (AB 1) in aqueous solution using UV-A light. Co-dopants shift the absorbance of ZnO, both in UV and visible region. Zr–Ag–ZnO is found to be more efficient than Ag–ZnO, Zr–ZnO, commercial ZnO, prepared ZnO, TiO2–P25 and TiO2 (Merck) at pH 9 for the mineralization of AB 1 under UV-A light. The influence of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization of AB 1 has been analyzed. The mineralization of AB 1 has been confirmed by COD measurements. Mechanism of degradation by Zr–Ag–ZnO is proposed. The catalyst is found to be reusable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号