首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel all-optical flip-flop based on a chirped nonlinear distributed feedback laser structure is proposed. The flip-flop does not require a holding beam. The optical gain is provided by a current injection into an active layer. The nonlinear wave-guiding layer consists of a chirped phase shifted grating accompanied with a negative nonlinear refractive index coefficient that increases in magnitude along the wave-guide. In the ‘OFF’ state, the chirped grating does not provide the required optical feedback to start lasing. An optical pulse switches the device ‘ON’ by reducing the chirp due to the negative nonlinear refractive index coefficient. The reduced chirp grating provides enough feedback to sustain a laser mode. The device is switched ‘OFF’ by cross gain modulation. GPGPU computing allows for long simulation time of multiple SET–RESET operations. The ‘ON/OFF’ transitions delays are in nanoseconds time scale.  相似文献   

2.
Zoweil H 《Applied optics》2010,49(28):5199-5204
A new, improved design of an all-optical flip flop is proposed. The waveguiding layer of the device consists of a phase-shifted nonlinear grating. The grating layers of a high refractive index have a negative nonlinear coefficient. A phase-shift section exists at the middle of the waveguiding layer. The optical gain is provided by current injection into an active layer. Nonlinearity in the waveguiding layer is achieved by direct absorption at the edge of the absorption band (Urbach tail). In the "OFF" state, the waveguiding layer forms a weak grating with an optical feedback below the laser threshold. In the "ON" state, the device functions as a distributed feedback (DFB) laser due to an induced strong grating in the nonlinear waveguiding layer. The improvements of the device performance by reducing the set pulse energy and accelerating the switch-off process are discussed. Field simulations in the time domain were performed.  相似文献   

3.
Lin B  Tjin SC  Zhang H  Tang D  Hao J  Dong B  Liang S 《Applied optics》2010,49(36):6855-6860
We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.  相似文献   

4.
A sandwich-type laser device with a surface-relief grating inside was infiltrated with dye-doped nematic liquid-crystals which functioned as gain media. The surface-relief grating was fabricated by soft lithographic technique on a sol-gel derived zirconium-doped hybrid film using a polydimethyl-siloxane replica. The optical properties of the distributed feedback (DFB) resonator were modified by introducing a high refractive index layer consisting of niobium pentoxide subsequently. Thermal induced shift of amplified spontaneous emission spectrum, switching of multi-wavelength DFB laser emission and occurrence of random lasing were demonstrated.  相似文献   

5.
Multicolor photoluminescence over the full visible color spectrum is critical in many modern science and techniques, such as full‐color lighting, displays, biological and chemical monitoring, multiband communication, etc., but the ultimate white lasing especially on the nanoscale is still a challenge due to its exacting requirements in the balance of the gain and optical feedback at different wavelengths. Recently, 2D transition metal carbides (MXenes) have emerged, with some superior chemical, physical, and environmental properties distinguishing them from traditional 2D materials. Here, a white laser with V2C MXene quantum dots (MQDs) is originally demonstrated by constructing a broadband nonlinear random scattering system with enhanced gain. The excitation‐dependent photoluminescence of V2C MQDs is enhanced by passivation and characterized, and their localized nonlinear random scattering is realized by the generation of excitation‐power‐dependent solvent bubbles. With the optimized excitation, the blue, green, yellow, and red light is amplified and simultaneously lased. This work not only provides a kind of promising material for white lasers, but also a design strategy of novel photonics for further applications.  相似文献   

6.
Optical switching effects of a guided-mode resonant grating (GMRG) with a Kerr medium have been simulated with the nonlinear finite differential time domain (FDTD) method. An asymmetric waveguide grating with a large second spatial harmonic component has been proposed for the optical switch. Resonant reflection occurs at both of the band-edge wavelengths. These wavelengths are used for the pump light and the probe light. The enhanced electric field of the pump light changes the resonant wavelength for the probe light as a result of the Kerr effect. We designed the GMRG with resonant wavelengths of 1489.6 and 1630 nm, which were used for the pump light and the probe light, respectively. When the grating material has a third-order susceptibility chi(3) of 8.5 x 10(-10) esu, the transmittance of the probe light changes from 0 to 80% by increasing the intensity of the pump light from 0 to 60 kW/mm2.  相似文献   

7.
Room-temperature random lasing is achieved from an n-AlN/p-GaN heterojunction. The highly disordered n-AlN layer, which was deposited on p-GaN:Mg layer via radio frequency magnetron sputtering, acts as a scattering medium to sustain coherent optical feedback. The p-GaN:Mg layer grown on sapphire provides optical amplification to the scattered light propagating along the heterojunction. Hence, lasing peaks of line width less than 0.4 nm are emerged from the emission spectra at round 370 nm for the heterojunction under forward bias larger than 5.1 V. Lasing characteristics of the heterojunction are in agreement with the behavior of random lasers.  相似文献   

8.
Abstract

An interaction of two counter-propagating waves in a periodically modulated medium with relaxing cubic nonlinearity is considered. On the basis of analytical solutions of the equations under the weak distributed feedback (DFB) approximation, we show that an increase in the reflectivity of ‘nonlinear’ DFB-structures takes place due to phase mismatching between the radiation and the light-induced grating. We carry out a numerical simulation of the obtained equations for arbitrary values of the coupling coefficient, Bragg detuning and incident pulse intensity. We also analysed the dynamics of the regular temporal modulation of initially continuous wave radiation caused by the ‘nonlinear’ grating.  相似文献   

9.
We briefly explain the fundamentals of detector nonlinearity applicable to both electrical and optical nonlinearity measurements. We specifically discuss the attenuation method for optical nonlinearity measurement that the NIST system is based upon, and we review the possible sources of nonlinearity inherent to thermal detectors used with high-power lasers. We also describe, in detail, the NIST nonlinearity measurement system, in which detector responsivity can be measured at wavelengths of 1.06 µm and 10.6 µm, over a power range from 1 W to 1000 W. We present the data processing method used and show measurement results depicting both positive and negative nonlinear behavior. The expanded uncertainty of a typical NIST high-power laser detector calibration including nonlinearity characterization is about 1.3 %.  相似文献   

10.
This paper presents a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic nondestructive evaluation techniques. These SHG techniques exploit the material nonlinearity of metals in order to measure the acoustic nonlinearity parameter, \(\beta \). In these measurements, a second harmonic wave is generated from a propagating monochromatic elastic wave, due to the anharmonicity of the crystal lattice, as well as the presence of microstructural features such as dislocations and precipitates. This article provides a summary of models that relate the different microstructural contributions to \(\beta \), and provides details of the different SHG measurement and analysis techniques available, focusing on longitudinal and Rayleigh wave methods. The main focus of this paper is a critical review of the literature that utilizes these SHG methods for the nondestructive evaluation of plasticity, fatigue, thermal aging, creep, and radiation damage in metals.  相似文献   

11.
Sato T 《Applied optics》2003,42(18):3500-3504
This paper reports on an external-cavity-diode laser (ECDL) employing a fiber Bragg grating, which was newly designed for WDM applications without temperature control. An optical signal waveform generated by the novel ECDL when the longitudinal lasing mode hopped was observed directly for the first time. It is confirmed that optical signal degradation caused by mode hopping can be suppressed effectively.  相似文献   

12.
The boundary integral equation code PCGrate-S(X) is used to analyze diffraction on Hubble Space Telescope Cosmic Origins Spectrograph gratings at different boundary shapes and layer thicknesses. An effect of resonance anomalies excited in nonconformal dielectric layers overcoated on the surface of metallic grating on the efficiency is studied for the first time to our knowledge. Refractive indices (RIs) for bulk MgF2 taken from well-known references are found to be not suitable for thin optical layers at wavelengths between 115 and 170 nm. A method based on scale fitting of calculated and measured grating efficiencies is outlined for derivation of thin-film optical constants at hard to measure wavelengths. The calculated efficiency based on real boundary profiles and derived RIs of the G185M subwavelength grating is shown to fit within 9.6% or better to the measured data.  相似文献   

13.
Cao H  Chen LR 《Applied optics》2005,44(17):3545-3551
We demonstrate wavelength tuning in single-wavelength and multiwavelength semiconductor fiber ring lasers that are mode locked with an optically injected control signal. A semiconductor optical amplifier is used to provide gain as well as to function as an optically controlled mode-locking element. Linearly chirped fiber Bragg gratings--single or superimposed--are used to define the lasing wavelengths as well as to provide wavelength tunability and allow for multiwavelength operation. We obtain pulses of tens of picoseconds in duration when we inject a sinusoidal optical control signal into the laser cavity, and we can tune the lasing wavelength(s) over the reflection bandwidth(s) of the grating(s) by simply changing the frequency of the injected control signal.  相似文献   

14.
We have synthesized and characterized three types of perovskite alkaline niobate nanowires: NaNbO(3), KNbO(3), and LiNbO(3) (XNbO(3)). All three types of nanowires exhibit strong nonlinear response. Confocal imaging has been employed to quantitatively compare the efficiency of synthesized nanowires to generate second harmonic signal and to show that LiNbO(3) nanowires exhibit the strongest nonlinear response. We also investigated the polarization response of the second harmonic generation (SHG) signal in all three types of alkaline nanowires for the two geometries tractable by our optical trapping setup. The SHG signal is highly influenced by the nanowire crystallinity and experimental geometry. We also demonstrate for the first time wave-guiding of SHG signal in all three types of alkaline niobate nanowires. By carefully examining nonlinear properties of (XNbO(3)) nanowires we suggest which type of wires are best suited for the given application.  相似文献   

15.
Nonlinear optics based on bulk materials is the current technique of choice for quantum‐state generation and information processing. Scaling of nonlinear optical quantum devices is of significant interest to enable quantum devices with high performance. However, it is challenging to scale the nonlinear optical devices down to the nanoscale dimension due to relatively small nonlinear optical response of traditional bulk materials. Here, correlated photon pairs are generated in the nanometer scale using a nonlinear optical device for the first time. The approach uses spontaneous four‐wave mixing in a carbon nanotube film with extremely large Kerr‐nonlinearity (≈100 000 times larger than that of the widely used silica), which is achieved through careful control of the tube diameter during the carbon nanotube growth. Photon pairs with a coincidence to accidental ratio of 18 at the telecom wavelength of 1.5 µm are generated at room temperature in a ≈100 nm thick carbon nanotube film device, i.e., 1000 times thinner than the smallest existing devices. These results are promising for future integrated nonlinear quantum devices (e.g., quantum emission and processing devices).  相似文献   

16.
Katagiri Y  Hara S 《Applied optics》1994,33(24):5564-5570
Increased spatial frequency is experimentally observed in the interferential light-output undulation of coupled cavity lasers that use a Fabry-Perot laser diode. The frequencies correspond to undulation periods of λ/4, λ/6, λ/8, and λ/10, which are extremely short compared with the normal period of λ/2. This increase is explained theoretically with a multiple-mode model in which one of the longitudinal modes of a coupled cavity laser with the lowest lasing threshold is selected as a lasing mode. This theoretical explanation is confirmed through experiments with a distributed feedback laser that shows a strong single-mode oscillation and yields light-output undulations with a spatial period of λ/2.  相似文献   

17.
It was widely accepted that embedding of metallic layers into optoelectronic structures is detrimental to lasing due to the absorption in the metal. However, recently macroscopic optical coherence and lasing was observed in microcavities with an intra-cavity single metallic layer. Here we propose the design of the of microcavity-type structure with two or more intra-cavity metallic layers which could serve as contacts for electrical pumping. The design of optical modes based on utilizing peculiarities of Tamm plasmon provides vanishing absorption due to the fixing of the node of the electric field of optical mode to metallic layers. Proposed design can be used for fabrication of vertical cavity lasers with intra-cavity metallic contacts.  相似文献   

18.
Jiang L  Asryan LV 《Nanotechnology》2008,19(41):415204
Effect of spatial hole burning (SHB) and multi-longitudinal-mode generation on high power operation of a quantum dot (QD) laser is studied. We use a set of rate equations for confined carriers in QDs, free carriers in the optical confinement layer and photons. The threshold currents and output powers of modes are computed numerically. The power of the main mode is reduced due to lasing of higher-order modes and spatially nonuniform carrier distribution. As a new mode turns on, kinks appear in the light-current curves (LCCs) of existing modes. SHB reduces the total optical power of a laser and contributes to nonlinearity of the overall LCC. The effect is more significant when any of the parameters of the structure is close to its critical tolerable value. The LCC becomes more linear with improving QD-size uniformity or increasing surface density of QDs or cavity length.  相似文献   

19.
We demonstrate a surface plasmon-polariton (SPP) waveguide all-optical switch that combines the unique physical properties of small molecules and metallic (plasmonic) nanostructures. The switch consists of a pair of gratings defined in an aluminum film coated with a 65 nm thick layer of photochromic (PC) molecules. The first grating couples a signal beam consisting of free space photons to SPPs that interact effectively with the PC molecules. These molecules can reversibly be switched between transparent and absorbing states using a free space optical pump. In the transparent (signal "on") state, the SPPs freely propagate through the molecular layer, and in the absorbing (signal "off") state, the SPPs are strongly attenuated. The second grating serves to decouple the SPPs back into a free space optical beam, enabling measurement of the modulated signal with a far-field detector. In a preliminary study, the switching behavior of the PC molecules themselves was confirmed and quantified by surface plasmon resonance spectroscopy. The excellent (16%) overlap of the SPP mode profile with the thin layer of switching molecules enabled efficient switching with power densities of approximately 6.0 mW/cm2 in 1.5 microm x 8 microm devices, resulting in plasmonic switching powers of 0.72 nW per device. Calculations further showed that modulation depths in access of 20 dB can easily be attained in optimized designs. The quantitative experimental and theoretical analysis of the nonvolatile switching behavior in this letter guides the design of future nanoscale optically or electrically pumped optical switches.  相似文献   

20.
Abstract

A digital optical repeater employing an electro-optic modulator and nonlinear electronic feedback provides optical bistability at a smaller value of the received optical power. The switching time is improved by increasing the local oscillator power and the overall gain of the feedback loop. The spread of the received optical pulses may be effectively reduced, leading to a considerable reduction in the intersymbol-interference power penalty. An optical amplification results in an improved system gain that exceeds the degradation due to a slight extinction penalty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号