首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opportunities for the production of milk and dairy products enriched with cis-9, trans-11 conjugated linoleic acid (CLA) were investigated. Eighteen mid-lactation cows were used in a continuous-design for 7 weeks. During the first week, cows received grass silage ad libitum supplemented with 10 kg per day of a cereal-based concentrate (control) that was replaced with a concentrate containing 50 g kg−1 of rapeseed oil (RO). Changes in milk fatty acid composition were monitored on a weekly basis and milk produced was used to manufacture Edam cheese and butter. Inclusion of RO in the concentrate supplement increased the mean levels of trans-octadecanoic, monounsaturated, CLA and polyunsaturated fatty acid in the milk fat from 1.6, 25.7, 0.46 and 2.8 to 4.3, 35.3, 1.02 and 3.9 g 100 g−1 total fatty acids, respectively. In contrast, the mean level of saturated fatty acids decreased from 71.4 to 60.7 g  100 g−1 total fatty acids. Changes in milk fatty acid composition due to RO occurred within 7 days, with responses reaching a plateau after 21 days. Furthermore, the CLA concentrations in the milk fat from individual cows ranged between 0.37 and 0.65 and 0.43 and 2.06 g 100 g−1 total fatty acids for the control and RO diet, respectively. CLA enriched milk was used successfully to manufacture of Edam cheese and butter with softer textures but with acceptable organoleptic and storage properties. Processing milk into butter or cheese had no effect on the CLA concentrations indicating that enrichment of dairy products is dependent on the content in raw milk fat.  相似文献   

2.
In this work, the effects of increasing amounts of 3 plant oils in diets on the fatty acid (FA) profile of goat milk were studied. The study consisted of 3 experiments, one per oil tested (linseed oil, LO; high oleic sunflower oil, HOSFO; and regular sunflower oil, RSFO). The 3 experiments were conducted successively on 12 Malagueña goats, which were assigned at random to 1 of 4 treatments: 0, 30, 48, and 66 (H) g of added oil/d. A basal diet made of alfalfa hay and pelleted concentrate (33:67) was used in all of the experiments. For each animal, milk samples collected after 15 d on treatments were analyzed for fat, protein, lactose, and FA composition, whereas individual milk yield was measured the last 3 d of each experiment. Oil supplementation affected neither dry matter intake nor milk production traits. Increasing the oil supplementation decreased the content of saturated FA (especially 16:0) in milk fat and increased mono- and polyunsaturated FA in a linear manner. Vaccenic acid content linearly increased with the oil supplementation by 370, 217, and 634% to 5.32, 2.66, and 5.09 g/100 g of total FA methyl esters with the H diet in LO, HOSFO, and RSFO experiments, respectively. Rumenic acid content linearly increased with LO and RSFO supplementation by 298 and 354% from 0.53 and 0.41 g/100 g of total FA methyl esters with the 0 g of added oil/d diet. The content of trans-10-18:1 was not affected by LO supplementation but showed an increasing linear trend with HOSFO supplementation and linearly increased with RSFO supplementation. The ratio of n-6 to n-3 polyunsaturated FA in milk fat was decreased by about 70% with the H diet in the LO experiment and it was increased by 54 and 82% with the H diet in the HOSFO and RSFO experiments. In conclusion, LO supplementation in this work seemed to be the most favorable alternative compared with HOSFO or RSFO supplementation.  相似文献   

3.
The objective of our experiment was to evaluate the effects of prill size of a palmitic acid–enriched fatty acid supplement (PA; 85% C16:0) on feed intake, nutrient digestibility, and production responses of dairy cows. Twenty-four primiparous and multiparous Holstein cows were assigned based on parity and production level to replicated 4 × 4 Latin squares balanced for carryover effects with 21-d periods. Treatments were a control diet (no added PA), or 2.0% PA added as a small prill size (PA-SM; 284 ± 12.4 µm), a medium prill size (PA-MD; 325 ± 14.7 µm), or a large prill size (PA-LG; 600 ± 17.4 µm) supplement. Overall, PA treatments increased milk fat content (4.25 vs. 3.99%), milk fat yield (1.48 vs. 1.39 kg/d), 3.5% fat-corrected milk (39.2 vs. 37.7 kg/d), and improved feed efficiency (fat-corrected milk:dry matter intake; 1.51 vs. 1.42) compared with control. Compared with control, PA treatments did not affect dry matter intake, body weight, body condition score, or yields of milk, protein, and lactose. The PA treatments increased neutral detergent fiber digestibility (44.8 vs. 42.4%) and reduced the digestibility of 16-carbon fatty acids (72.3 vs. 79.1%) and total fatty acids (76.6 vs. 80.3%). Compared with control, PA treatments reduced the contents of de novo synthesized milk fatty acids (23.0 vs. 25.8 g/100 g of fatty acids) and preformed milk fatty acids (36.3 vs. 39.1 g/100 g of fatty acids), but did not affect their yields. In contrast, PA treatments increased the content (40.8 vs. 35.1 g/100 g of fatty acids) and yield (570 vs. 436 g/d) of 16-carbon milk fatty acids compared with control. The PA prill size had no effect on dry matter intake, yield of milk and milk components, or feed efficiency. However, PA-LG tended to increase milk fat content compared with PA-SM (4.28 vs. 4.22%), and it increased 16-carbon fatty acid digestibility compared with PA-MD (74.2 vs. 71.0%) and PA-SM (74.2 vs. 71.7%). Additionally, PA-LG increased total fatty acid digestibility compared with PA-MD (78.1 vs. 75.6%) and PA-SM (78.1 vs. 76.0%). Results demonstrate that PA increased milk fat content and yield, and feed efficiency. Reducing prill size decreased fatty acid digestibility, but it had no effect on animal performance under the dietary conditions and prill sizes evaluated.  相似文献   

4.
Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91 d in milk) were used in replicated 4 × 4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12 kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5 g/100 g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45 g/100 g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8 g/100 g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.  相似文献   

5.
Thirty-one Holstein cows (six ruminally cannulated) were used to evaluate milk fatty acids (FA) composition and conjugated linoleic acid (CLA) content on three dietary treatments: 1) total mixed rations (TMR), 2) pasture (Avena sativa L.) plus 6.7 kg DM/d of corn-based concentrate (PCorn), and 3) pasture plus PCorn with 0.8 kg DM/d of Ca salts of unsaturated FA replacing 1.9 kg DM/d of corn (PFat). No differences were found in total (22.4 kg/d) or pasture (18.5 kg/d) dry matter intake, ruminal pH, or total volatile fatty acids concentrations. Fat supplementation did not affect pasture neutral detergent fiber digestion. Milk production did not differ among treatments (19.9 kg/d) but 4% fat-corrected milk was lower for cows fed the PFat compared to cows fed the TMR (16.1 vs. 19.5 kg/d) primarily because of the lower milk fat percentage (2.56 vs. 3.91%). Milk protein concentration was higher for cows fed the TMR than those on both pasture treatments (3.70 vs. 3.45%). Milk from the cows fed the PCorn had a lower content of short- (11.9 vs. 10.4 g/100 g) and medium-chain (56.5 vs. 47.6 g/100 g) FA, and a higher C18:3 percentage (0.07 vs. 0.57 g/100 g) compared with TMR-fed. Cows fed the PFat had the lowest content of short- (8.85 g/100 g) and medium-chain (41.0 g/100 g) FA, and the highest of long-chain FA (51.4 g/100 g). The CLA content was higher for cows in PCorn treatment (1.12 g/100 g FA) compared with cows fed the TMR (0.41 g/100 g FA), whereas the cows fed the PFat had the highest content (1.91 g/100 g FA). Pasture-based diets increased the concentrations of long-chain unsaturated FA and CLA in milk fat. The partial replacement of corn grain by Ca salts of unsaturated FA in grazing cows accentuated these changes. However, those changes in milk FA composition were related to a depression in milk fat.  相似文献   

6.
This project aimed to determine effects of applying an inoculant containing homofermentative and heterofermentative bacteria on the fermentation, nutritive value, aerobic stability, and nutrient losses from corn silage produced in farm-scale silos. Corn forage was harvested at 34% dry matter (DM) and treated without (control) or with 5 × 105 cfu/g of Lactobacillus buchneri and Pediococcus pentosaceus. The inoculant was sprayed on alternate 8-row-wide swaths of forage, and the untreated and inoculated forages were alternately packed into 3.6-m-wide bag silos. Forty-five tonnes of corn forage were packed into each of 4 replicate bags per treatment and ensiled for 166 d. Silage removed from the bags (500 kg/d) was separated into good and spoiled (visibly moldy or darker) silage portions, and weighed for 35 d. Weekly composites were analyzed for chemical composition, aerobic stability, and fungal counts. Aerobic stability was measured using data loggers that recorded sample and ambient temperature every 30 min for 7 d. Inoculation did not affect the chemical composition of the spoiled or good silage but decreased the quantity (5.7 vs. 12.9 kg/d) and percentage (3.4 vs. 7.8) of spoiled silage in the bags by over 50%. Losses of crude protein (0.28 vs. 0.92 kg/d), gross energy (6.0 × 104 vs. 1.8 × 105 kJ/d), and neutral detergent fiber (1.34 vs. 4.12 kg/d) in spoiled silage were less in inoculated versus control silages. Inoculated silages had lower pH (3.91 vs. 3.99), lactate concentration (7.63 vs. 7.86%), lactate:acetate ratio (1.58 vs. 2.53%), and a greater acetate (5.11 vs. 3.56%) concentration than the control silage. Inoculated silages tended to have fewer yeasts (2.59 vs. 4.62 log cfu/g) than control silages, but aerobic stability was not different across treatments (14.7 vs. 9.5 h). Applying the inoculant made the fermentation more heterolactic, inhibited the growth of yeasts, and substantially reduced the amount of spoilage and the associated energy and nutrient losses.  相似文献   

7.
This study was conducted to evaluate the effects of chestnut tannins (CT) and coconut oil (CO) on growth performance, methane (CH4) emission, ruminal fermentation, and microbial populations in sheep. A total of 48 Rideau Arcott sheep (average body weight 31.5 ± 1.97 kg, 16 wk old) were randomly assigned into 6 treatment groups in a 3 × 2 factorial design, with CT and CO as the main effects (8 sheep per group). The treatments were control diet (CTR), 10 or 30 g of CT/kg of diet (CT10 and CT30), 25 g of CO/kg of concentrate (CO25), and 10 or 30 g of CT/kg of diet + 25 g of CO/kg of concentrate (CT10CO25 and CT30CO25). After the feeding trial (60 d), all sheep were moved to respiratory chambers to measure CH4 emission. After CH4 emission measurements, all sheep were slaughtered to obtain rumen fluid samples. Results showed that the addition of CT, CO, and CT + CO had no significant effects on growth performance of sheep but reduced CH4 emission. Addition of CT reduced the NH3-N concentration in rumen fluid in CT30. Addition of CO decreased the concentration of total volatile fatty acids in rumen fluid. No significant differences were observed in pH and molar proportion of volatile fatty acids among treatments. Addition of CT, CO, and CT + CO significantly decreased methanogen and protozoa populations. Moreover, CO decreased counts of Fibrobacter succinogenes. No significant differences were observed in populations of fungi, Ruminococcus flavefaciens, or Ruminococcus albus among treatments. In conclusion, supplementation of CT and CO seemed to be a feasible means of decreasing emissions of CH4 from sheep by reduction of methanogen and protozoa populations with no negative effect on growth performance.  相似文献   

8.
The inclusion of grazing in dairy feeding systems can improve animal welfare and reduce feed costs and labor for animal care and manure management. This work aimed to evaluate the effects of including pearl millet herbage (Pennisetum glaucum ‘Campeiro') as a supplement for dairy cows fed total mixed rations (TMR). The treatments included 100% TMR offered ad libitum (control, TMR100), 75% TMR ad libitum intake + access to grazing of a pearl millet pasture between the morning and afternoon milkings (7 h/d; pTMR75), and 50% TMR ad libitum intake + access to grazing of a pearl millet pasture between the morning and afternoon milkings (7 h/d; pTMR50). Nine multiparous Holstein and F1 Jersey × Holstein cows were distributed in a replicated 3 × 3 Latin square design with 3 periods of 21 d (a 16-d adaptation period and a 5-d measurement period). Cows in the TMR75 and TMR50 groups strip-grazed a pearl millet pasture with pre- and postgrazing sward height targets of 60 and 30 cm, respectively. The herbage dry matter intake (DMI) increased with decreasing mixed ration supplies, and the total DMI decreased linearly from 19.0 kg/d in the TMR100 group to 18.0 kg/d in the pTMR50 group. Milk production decreased linearly from 24.0 kg/d in the TMR100 group to 22.4 kg/d in the pTMR50 group, and energy-corrected milk (ECM) production decreased linearly from 26.0 kg/d to 23.6 kg/d. Enteric methane (CH4) emissions decreased linearly from 540 g/d in the TMR100 group to 436 g/d in the pTMR50 group, and CH4 yields (g/kg of DMI) tended to decrease linearly. The CH4 intensity was similar between treatments, averaging 20 g of CH4/kg of ECM. The inclusion of pearl millet herbage in the dairy cow diets decreased the total DMI and milk production to a small extent without affecting CH4 intensity (g/kg of ECM).  相似文献   

9.
《Meat science》2013,93(4):519-524
The meat lipid fraction of psoas major muscle from 20 adult (10 males and 10 females) feral Iberian red deer (Cervus elaphus hispanicus) was characterized by quantification of total fat, total cholesterol, vitamin E and fatty acid (FA) composition, including detailed trans octadecenoate isomers and conjugated linoleic acid (CLA) isomeric profile.The total lipid content revealed a very lean meat (0.99 g/100 g of meat), with total cholesterol content averaging 55.6 mg/100 g of muscle. The FA profile displayed a very high PUFA level for ruminant meat (30.2 g/100 g FA). The 18:2 cis-9,trans-11 content was fairly low (0.26% of total FA) compared with other ruminant meats.The comparison of stags and hinds showed more similarities than differences. Nevertheless, hinds displayed superior contents of α-tocopherol and trans MUFA and a better n−6/n−3 ratio than stags.  相似文献   

10.
Subacute ruminal acidosis reduces lactation performance in dairy cattle and most often occurs in animals fed a high concentrate:forage ration with large amounts of readily fermentable starch, which results in increased production of volatile fatty acids and lactic acid and a reduction in ruminal pH. Acarbose is commercially available (Glucobay, Bayer, Wuppertal, Germany) and indicated for the control of blood glucose in diabetic patients. In cattle, acarbose acts as an α-amylase and glucosidase inhibitor that slows the rate of degradation of starch to glucose, thereby reducing the rate of volatile fatty acid production and maintaining rumen pH at higher levels. The ability of acarbose to reverse the reduced feed intake and milk fat percentage and yield associated with a high concentrate:forage ration with a high risk of inducing subacute ruminal acidosis was evaluated in 2 experiments with lactating dairy cattle. In 2 preliminary experiments, the effects of a 70:30 concentrate:forage ration on ruminal pH and lactation were evaluated. Ruminal pH was monitored in 5 Holstein steers with ruminal cannulas every 10 min for 5 d. Ruminal pH was <5.5 for at least 4 h in 79% of the animal days. In dairy cows, the 70:30 concentrate:forage ration decreased feed intake 5%, milk fat percentage 7%, and milk fat yield 8% compared with a 50:50 concentrate:forage ration but did not affect milk yield. Early lactating dairy cattle were offered the 70:30 concentrate:forage ration with 0 or 0.75 g/d of acarbose added in a crossover design in 2 experiments. In the first experiment, acarbose increased dry matter feed intake (23.1 vs. 21.6 kg/d) and 3.5% fat-corrected milk yield (33.7 vs. 31.7 kg/d) because of an increase in percentage milk fat (3.33 vs. 3.04%) compared with control cows. In the second experiment, cows were fasted for 3 h before the morning feeding to induce consumption of a large meal to mimic conditions that might be associated with unplanned delayed feeding. In this experiment, acarbose also increased feed intake (22.5 vs. 21.8 kg/d) and 3.5% fat-corrected milk yield (36.9 vs. 33.9 kg/d) due to increased percentage milk fat (3.14 vs. 2.66%) compared with controls. Thus, acarbose reversed the decreased feed intake and low milk fat percentage and yield associated with feeding a high concentrate:forage ration shown to induce subacute ruminal acidosis in Holstein steers.  相似文献   

11.
The study aimed to assess some quality traits of the subcutaneous adipose tissue of raw ham for Parma production, obtained from 56 “traditional” Landrace × Large White (L × LW) and 56 Cotswold commercial hybrid (CH) pigs reared in the same conditions and slaughtered at an average live weight (l.w.) of about 165 kg. Further, the relationships between lipid composition, l.w. and carcass fatness were studied. Compared to the CH, the fatty tissue of L × LW pigs showed a lower water (6.33% vs. 7.35%, P < 0.01) and a higher lipid (91.18% vs. 90.18%, P < 0.01) content. CH lipids had higher polyunsaturated fatty acids (16.53% vs. 13.75%, P < 0.01), and smaller saturated fatty acids (38.20% vs. 40.26%, P < 0.01) content and a higher iodine value (69.69 vs. 65.22, P < 0.01). An increased slaughter weight was associated with a lower degree of lipid unsaturation, but only the lowest weight class (<160 kg) showed a significant difference compared to the other two classes (⩾160 < 170 and ⩾170 kg). Regardless of genetic type or l.w. class, an increase in backfat thickness is associated with an increase in saturated and monounsaturated fatty acids and a remarkable reduction in polyunsaturated content.  相似文献   

12.
This study investigated the effect of fat fractionation on the conjugated linoleic acid (cis-9, trans-11-C18 : 2) content of bovine milk fat. Anhydrous milk fat was fractionated into hard and soft fractions using controlled cooling and agitation. Fractionation of milk fat pre-melted at 60°C using a temperature programme of 33–10°C and a cooling rate of 0.58°C h−1 yielded a soft fraction containing 63.2% more conjugated linoleic acid (2.22 g 100 g−1 FAME), which was also enriched in polyunsaturated fatty acids and vaccenic acid (trans-11-C18 : 1) compared with the parent fat. Agitation following fractionation was found to have a negative effect on the conjugated linoleic acid content of the soft fraction. Refractionation of the soft fraction did not increase the yield of conjugated linoleic acid. The conjugated linoleic acid and trans fatty acid content of 26 selected food products ranging in milk fat content from 0 to 100% is reported. Conjugated linoleic acid concentrations ranged from 0 to 16.2 mg g−1 fat and were generally lower than the trans fatty acid content which ranged from 0 to 155.7 mg g−1 fat. Spreads containing vegetable oils contained higher trans fatty acid and lower conjugated linoleic acid contents than milk fat-containing products. This study highlights that a milk fat fraction enriched in conjugated linoleic acid may be achieved by dry fractionation.  相似文献   

13.
To evaluate the effect of supplementing the diet of Comisana sheep with by-products from industrial tomato manufacture on the fat composition and conjugated linoleic acid (CLA) content of milk fat, two groups of 50 ewes each were fed either total mixed ration standard (TMRS) or total mixed ration with added tomato by-products (TMRA). Milk fat composition was determined by high-resolution gas chromatography (HRGC). The milk fat content for the animals fed the TMRA diet increased by 6.41% (P < 0.01) after six weeks, compared with the animals fed the TMRS diet. The CLA content in the milk fat for the group of animals fed the TMRA diet was 19.8% (P < 0.05) higher than for those fed the TMRS diet, and reached 1.33 g 100 g?1 fat, while the polyunsaturated fatty acid (PUFA) content increased by a 6.43% (P < 0.05) and reached 7.12 g 100 g?1 fat. The fatty acid composition showed an increase in the amount of polyunsaturated fatty acids. The n ? 3:n ? 6 ratio increased by 13% in the milk from sheep fed with the TMRA diet. These observations were confirmed by triglyceride analysis, which showed a decrease in the amount of short-chain (C28–C32) and medium-chain (C34–C42) triglycerides after six weeks, while the opposite was observed for the long-chain triglycerides (C44–C54).  相似文献   

14.
Fifty-eight multiparous cows were assigned randomly to one of two rations. Control cows received a concentrate mixture that contained 20% soybean meal as the protein supplement, and the experimental cows were fed a concentrate that contained 25% heat-treated whole soybeans. The experimental period started 10 d after calving and continued for 15 wk.Experimental cows peaked later in milk production (5 vs. 3 wk) but at a higher level (39.8 vs. 39.4 kg/d) than control cows. Although milk production was less during the first 4 wk, experimental cows surpassed the controls in wk 5 and increased the advantage to 2.0 kg/cow/d by wk 15. For the total 15-wk period, average milk production was 37.0 kg/d for the experimental cows compared with 36.2 kg/d for the controls.Total dry matter intake, lactation efficiency, body weight, and reproductive performance were similar for both treatments. Cows fed heated soybeans consumed more metabolizable energy, 61.6 vs. 60.4 Mcal/d for controls. Cows on experimental diet also had higher free fatty acids in plasma (5.6 vs. 4.8 mg/100 ml) and triglycerides (25.0 vs. 20.9 mg/100 ml). The acetate-to-propionate ratio of rumen acids was significantly lower in the experimental group (3.36 vs. 3.61).  相似文献   

15.
Milk lipids are an interesting source of bioactive molecules with functional and nutritional properties. Although the composition of milk lipids is of utmost importance for food processing and human consumption, it is far from being fully known. The objective of this study was to perform a comparative analysis of the chemical composition of lipids from bovine milks produced in French Brittany during spring (fresh pasture based diet) and winter (corn silage based diet). The polar lipid content and relative proportions of the glycerophospholipids and sphingomyelin were determined using HPLC/ELSD. The fatty acid composition of total lipids and polar lipids was determined using GC. The milks collected in spring contained i) a lower amount of total lipids: 39.7 ± 0.8 g/kg vs 41.7 ± 0.5 g/kg in winter, ii) a higher amount of polar lipids: 138 ± 11 vs 112 ± 8 mg/kg milk; 3.5 ± 0.3 vs 2.7 ± 0.4 mg/g fat, which was related to a smaller size of fat globules, and iii) a higher amount of sphingomyelin, 32 mg/kg milk vs 25 mg/kg milk in winter. Interestingly, the polar lipids from the milk fat globule membrane contained a higher concentration of unsaturated fatty acids in spring (C18:1 n  9, C18:2 n  6, C18:3 n  3 and long-chain n  3 fatty acids). Milk from cows fed a fresh pasture-based diet during spring is an interesting source of dietary long chain polyunsaturated fatty acids for human consumption.  相似文献   

16.
The objective of this study was to investigate the effect of monensin (MN) and dietary soybean oil (SBO) on milk fat percentage and milk fatty acid (FA) profile. The study was conducted as a randomized complete block design with a 2 × 3 factorial treatment arrangement using 72 lactating multiparous Holstein dairy cows (138 ± 24 d in milk). Treatments were [dry matter (DM) basis] as follows: 1) control total mixed ration (TMR, no MN) with no supplemental SBO; 2) MN-treated TMR (22 g of MN/kg of DM) with no supplemental SBO; 3) control TMR including 1.7% SBO; 4) MN-treated TMR including 1.7% SBO; 5) control TMR including 3.4% SBO; and 6) MN-treated TMR including 3.4% SBO. The TMR (% of DM; corn silage, 31.6%; haylage, 21.2%; hay, 4.2%; high-moisture corn, 18.8%; soy hulls, 3.3%; and protein supplement, 20.9%) was offered ad libitum. The experiment consisted of a 2-wk baseline, a 3-wk adaptation, and a 2-wk collection period. Monensin, SBO, and their interaction linearly reduced milk fat percentage. Cows receiving SBO with no added MN (treatments 3 and 5) had 4.5 and 14.2% decreases in milk fat percentage, respectively. Cows receiving SBO with added MN (treatments 4 and 6) had 16.5 and 35.1% decreases in milk fat percentage, respectively. However, the interaction effect of MN and SBO on fat yield was not significant. Monensin reduced milk fat yield by 6.6%. Soybean oil linearly reduced milk fat yield and protein percentage and linearly increased milk yield and milk protein yield. Monensin and SBO reduced 4% fat-corrected milk and had no effect on DM intake. Monensin interacted with SBO to linearly increase milk fat concentration (g/100 g of FA) of total trans-18:1 in milk fat including trans-6 to 8, trans-9, trans-10, trans-11, trans-12 18:1 and the concentration of total conjugated linoleic acid isomers including cis-9, trans-11 18:2; trans-9, cis-11 18:2; and trans-10, cis-12 18:2. Also, the interaction increased milk concentration of polyunsaturated fatty acids. Monensin and SBO linearly reduced, with no significant interaction, milk concentration (g/100 g of FA) of short- and medium-chain fatty acids (<C16). Soybean oil reduced total saturated FA and increased total monounsaturated FA. These results suggest that monensin reduces milk fat percentage and this effect is accentuated when SBO is added to the ration.  相似文献   

17.
Milk fat depression in cows fed high-grain diets has been related to an increase in the concentration of trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid (CLA) in milk. These fatty acids (FA) are produced as a result of the alteration in rumen biohydrogenation of dietary unsaturated FA. Because a reduction in ruminal pH is usually observed when high-concentrate diets are fed, the main cause that determines the alteration in the biohydrogenation pathways is not clear. The effect of pH (6.4 vs. 5.6) and dietary forage to concentrate ratios (F:C; 70:30 F:C vs. 30:70 F:C) on rumen microbial fermentation, effluent FA profile, and DNA concentration of bacteria involved in lipolysis and biohydrogenation processes were investigated in a continuous culture trial. The dual-flow continuous culture consisted of 2 periods of 8 d (5 d for adaptation and 3 d for sampling), with a 2 × 2 factorial arrangement of treatments. Samples from solid and liquid mixed effluents were taken for determination of total N, ammonia-N, and volatile fatty acid concentrations, and the remainder of the sample was lyophilized. Dry samples were analyzed for dry matter, ash, neutral and acid detergent fiber, FA, and purine contents. The pH 5.6 reduced organic matter and fiber digestibility, ammonia-N concentration and flow, and crude protein degradation, and increased nonammonia and dietary N flows. The pH 5.6 decreased the flow of C18:0, trans-11 C18:1 and cis-9, trans-11 CLA, and increased the flow of trans-10 C18:1, C18:2n-6, C18:3n-3, trans-11,cis-15 C18:2 and trans-10,cis-12 CLA in the 1 h after feeding effluent. The pH 5.6 reduced Anaerovibrio lipolytica (32.7 vs. 72.1 pg/10 ng of total DNA) and Butyrivibrio fibrisolvens vaccenic acid subgroup (588 vs. 1,394 pg/10 ng of total DNA) DNA concentrations. The high-concentrate diet increased organic matter and fiber digestibility, nonammonia and bacterial N flows, and reduced ammonia-N concentration and flow. The high-concentrate diet reduced trans-11 C18:1 and trans-10 C18:1, and increased C18:2n-6, C18:3n-3 and trans-10,cis-12 CLA proportions in the 1 h after feeding effluent. The increase observed in trans-10,cis-12 CLA proportion in the 1 h after feeding effluent due to the high-concentrate diet was smaller that that observed at pH 5.6. Results indicate that the pH is the main cause of the accumulation of trans-10 C18:1 and trans-10, cis-12 CLA in the effluent, but the trans-10,cis-12 CLA proportion can be also affected by high levels of concentrate in the diet.  相似文献   

18.
The objectives of this study were to evaluate the effects of free-access acidified milk replacer feeding on the pre- and postweaning health of dairy and veal calves. Individually housed calves were systematically assigned at birth to 1 of 2 feeding programs: free-access feeding (ad libitum) of acidified milk replacer (ACD, n = 249) or traditional restricted feeding (3 L fed twice daily) of milk replacer (RES, n = 249). Calves were fed milk replacer containing 24% crude protein and 18% fat. Acidified milk replacer was prepared to a target pH between 4.0 and 4.5 using formic acid. Calves were weaned off milk replacer at approximately 6 wk of age. Weaning occurred over 5 d, and during this weaning period, ACD calves had access to milk replacer for 12 h/d and RES calves were offered only one feeding of milk replacer (3 L) daily. Calves were monitored daily for signs of disease. Fecal consistency scores were assigned each week from birth until weaning. A subset of calves was systematically selected for fecal sampling at 3 time points between 7 and 27 d of age. Fecal samples were analyzed for enterotoxigenic Escherichia coli F5, Cryptosporidium parvum, rotavirus, and coronavirus. Hip width, hip height, body length, heart girth, and body weight were measured at birth and weaning. Postweaning body weight measurements were collected from the heifers at approximately 8 mo of age. Postweaning body weight and carcass grading information was collected from the veal calves at slaughter once a live weight between 300 and 350 kg had been achieved. The odds of ACD calves being treated for a preweaning disease event tended to be lower than that of the RES calves (1.2 vs. 5.2%, respectively). Preweaning mortality, postweaning disease treatment, and postweaning mortality did not differ between feeding treatments. The ACD feeding treatment supported greater preweaning average daily gain (0.59 vs. 0.43 kg/d) and structural growth than RES feeding. Postweaning average daily gain and carcass characteristics were similar for ACD and RES calves. These results indicate that free-access acidified milk replacer feeding tended to support improved health, and greater body weight gain and structural growth during the preweaning period; these effects did not persist in the postweaning period. The growth advantage observed before weaning in the ACD calves likely disappeared due to the weaning methods used.  相似文献   

19.
Urea-free control, medium-, and high-urea concentrates containing 0, 1.6, and 2.3% urea, respectively, were applied as main treatments, each to a group of nine lactating cows during three 8-wk periods. Split plot treatments consisted of feeding each concentrate normally or the urea portion in phase 2 or 4 h after feeding the soybean meal component. Dry matter intake, milk yield, milk lipid composition of butyric through capric acids were decreased, but milk linoleic acid was increased with high-urea rather than medium-urea or control concentrate. Ammonia in blood serum was reduced with 2-h phase feeding and urea was reduced with 2- or 4-h phase feeding as compared to normal feeding. Ammonia was unaffected by normal or phase feeding of the control concentrate. Normal feeding of high-urea concentrate increased ammonia in serum, but phase feeding reverted concentration comparable to the control group (160 to 122 μ/100 ml). Ammonia was nearly the same with normal or phase feeding of medium-urea concentrate.  相似文献   

20.
The objective of this study was to investigate the effects of dietary energy levels and rumen-protected lysine supplementation on serum free fatty acid levels, β-hydroxybutyrate levels, dry matter (DM) intake, and milk production and composition. Treatments were arranged in a 2 × 2 factorial design with 2 dietary energy levels [high net energy for lactation (NEL) = 1.53 Mcal/kg of DM vs. low NEL = 1.37 Mcal/kg of DM; HE vs. LE) fed either with rumen-protected lysine (bypass lysine; 40 g/cow per day) or without rumen-protected lysine (control). Sixty-eight third-lactation Holstein dairy cows entering their fourth lactation were randomly allocated to 4 treatments groups: HE with bypass lysine, HE without bypass lysine, LE with bypass lysine, and LE without bypass lysine. Groups were balanced based upon their expected calving date, previous milk yields, and body condition score. All cows were fed the same diet (NEL = 1.34 Mcal/kg of DM) during the dry period prior to the trial. Rumen-protected lysine was top-dressed on a total mixed ration to deliver 9.68 g/d of metabolizable lysine to pre- and postpartum cows. After calving, all cows received the same TMR (1.69 Mcal/kg of DM). Blood samples were collected at ?21, ?14, ?7, 0, 3, 7, 14, and 21 d relative to calving, and free fatty acids and β-hydroxybutyrate concentrations were measured. Amount of feed offered and orts were collected and measured for individual cows 4 d/wk. Milk samples were collected once per week following calving, and milk composition was analyzed. Feeding high NEL to close-up cows decreased the concentrations of free fatty acid and β-hydroxybutyrate in prepartum cows but not in postpartum cows. Addition of rumen-protected lysine increased postpartum DM intake, and decreased serum free fatty acid and β-hydroxybutyrate concentrations. Neither energy nor rumen-protected lysine supplementation nor their interaction affected milk yield or fat or lactose yields. However, cows in the group receiving HE with bypass lysine tended to produce more milk compared with other groups and had a lower blood β-hydroxybutyrate concentration postpartum. These results indicate that feeding a high-energy diet together with rumen-protected lysine improved DM intake and lowered serum free fatty acid and β-hydroxybutyrate concentrations in transition cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号