首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(100)AlN films have better surface acoustic wave (SAW) properties than (002) AlN films. In this research, (100) AlN films were combined with diamonds as a new composite SAW substrate. The SAW properties of (100) AlN films on diamonds were analyzed with 4 composite structures: interdigital transducer (IDT)/(100)AlN/diamond, (100)AlN/IDT/diamond, IDT/(100)AlN/metal/diamond, and metal/IDT/(100) AlN/diamond, and they exhibited some excellent SAW properties. Our research results provide a predictable and theoretical basis for further application on high-velocity SAW devices.  相似文献   

2.
3.
基于兰姆波的结构工况检测技术在评估复合材料和金属结构的安全性和耐久性方面发挥着重要的作用。作为对传统的压电换能器(PZT)的一种很好的替代,光纤传感器在传感方面的应用正被广泛地挖掘出来,包括兰姆波检测。本文从理论上建立了超声兰姆波作用下光纤非本征法布里.玻罗(EFPI)传感器参数与其输出性能之间的关系。数值结果显示了传感器的性能与其相对于声源的方向角以及传感器的计量长度与超声波长的比值相关。所得出的结论对于EFPI传感器精确地探测兰姆波提供了理论依据。  相似文献   

4.
An exploratory application of position-modulation photoacoustic imaging of ion-implanted (100)-oriented Si wafers was undertaken to assess its potential as a diagnostic probe in semiconductor processing. Wafer scans were performed using acoustooptic modulation of a 1.06-mum Nd(3+):YAG laser beam up to 0.2 MHz with piezoelectric photoacoustic detection. Sensitivity ranges to ion-implanted parameters (ionic species and fluences) were studied and the capability of the technique to monitor processing-induced damage was established. Results indicate that position-modulated photoacoustic detection offers higher sensitivity than single-beam photothermal imaging and has distinct advantages over other analytical techniques.  相似文献   

5.
An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.  相似文献   

6.
We report on the generation of superbroad spectrum bunched noise-like pulses from a passively mode-locked erbium-doped fiber laser, in which the cavity is made of purely anomalous dispersion fibers. The maximum 3 dB spectral bandwidth of the pulse is about 98 nm. We show numerically that the superbroad spectrum of the pulse is caused by the fiber birefringence.  相似文献   

7.
The performance characteristics of a kilohertz solid-state laser source for ultraviolet Raman spectroscopy are described. Deep ultraviolet (UV) excitation in the 193-210 nm region is provided by mixing of the fundamental and third harmonics of a Ti-sapphire laser, which is pumped by the second harmonic of a Q-Switched Nd-YLF laser. The combination of tunability, narrow linewidth, high average power, good stability, and kilohertz repetition rate makes this laser suitable for deep UV resonance Raman applications. The short pulse duration (approximately 20 ns) permits nanosecond time resolution in pump-probe applications. The low peak power and high data rate provide artifact-free spectra with a high signal-to-noise ratio. UV Raman cross-section and Raman excitation profiles are reported for gaseous O2 (relative to N), aqueous ClO4-, tyrosine, phenylalanine, tryptophan, histidine, and hemoglobin excited between 193 nm and 210 nm to illustrate laser performance.  相似文献   

8.
9.
Lin GR  Wu JR 《Applied optics》2003,42(27):5477-5482
A single-mode and highly side-mode-suppressed 1.55-microm Fabry-Perot laser diode (FPLD) is achieved by feedback injection with an erbium-doped fiber laser (EDFL). For selection of the strongest longitudinal mode from the gain spectrum of the FPLD for lasing in the EDFL, the FPLD is operated at just below the threshold condition and is feedback injected by 0.02% of the EDFL output power. The lasing mode and center wavelength of the proposed single-mode FPLD source are decided by cross-correlated gain profiles of the EDFL and the FPLD; however, the effect of FPLD injection modes is found to be more pronounced. The optimized lasing linewidth (system limitation) and side-mode suppression ratio of 0.01 nm and > 49 dB are obtained, which are far better than those of a FPLD at free-running condition. The worst linewidths at 3- and 10-dB decay are observed to be at approximately 0.016 and 0.05 nm, respectively. Linear wavelength tuning of as much as 4.5 nm (from 1558.7 to 1563.2 nm) by adjustment of the temperature of the FPLD from 10 degrees C to 40 degrees C at just below threshold is reported. The wavelength-tuning slope is approximately 0.14 nm/degrees C under temperature accuracy of 0.1 degrees C.  相似文献   

10.
Sidorin Y  Howe D 《Applied optics》1998,37(15):3256-3263
When butt coupling a Fabry-Perot laser diode to an extremely closely spaced waveguide (separation less than or equal to a few times the Rayleigh range of the laser beam), there is a trade-off between the optimal power coupling and the variation of the coupled laser diode's operational characteristics. Changes in the butt-coupling configuration parameters influence the coupling efficiency, as well as the strength of the feedback into the laser diode. Using a previously reported phenomenological model that treats the butt-coupled laser diode as an extremely short external-cavity (ESEC) device, we quantitatively describe how the butt-coupling parameters can be used to control the output power, threshold current, wavelength, and relative intensity noise of the ESEC laser diode. Our analyses are supported by experimental results. The importance of choosing the correct coordinate plane for evaluation of the overlap integrals that are used in the model is also discussed.  相似文献   

11.
An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.  相似文献   

12.
YM Chang  J Lee  YM Jhon  JH Lee 《Applied optics》2012,51(21):5295-5301
We present the results of an investigation regarding a Q-switched mode-locked fiber laser scheme based on a cavity modulation frequency detuning technique. The approach is based on undamped laser relaxation oscillations occurring due to frequency detuning in the fundamental cavity resonance frequency. Through a range of experiments with an erbium-doped, fiber-based, ring-cavity laser, this approach has been shown to be capable of generating high-quality Q-switched mode-locked pulses from an optical fiber-based laser. The maximum frequency detuning range for a stable Q-switched mode-locking operation has been observed to vary depending on the pump power used. We found that the highest pulse peak power was obtained at the frequency detuning threshold at which the operation changed from the mode-locking to the Q-switched mode-locking regime.  相似文献   

13.
We have tested a new kind of Fabry-Perot long-baseline optical resonator proposed to reduce the thermal noise sensitivity of gravitational wave interferometric detectors--the "mesa beam" cavity--whose flat top beam shape is achieved by means of an aspherical end mirror. We present the fundamental mode intensity pattern for this cavity and its distortion due to surface imperfections and tilt misalignments, and contrast the higher order mode patterns to the Gauss-Laguerre modes of a spherical mirror cavity. We discuss the effects of mirror tilts on cavity alignment and locking and present measurements of the mesa beam tilt sensitivity.  相似文献   

14.
Ma H  Chen Y  Li M  Jin Z 《Applied optics》2010,49(32):6253-6263
We present an in-depth analysis of the transient response of a resonator fiber optic gyro based on triangular wave phase modulation. Unusual effects have been observed in the process of tracking the resonant frequency of an optical fiber ring resonator (OFRR). There is a distortion phenomenon, unlike the ideally square wave or a pure DC output of the OFRR, but signal overshoot or undershoot occurs. A deep analysis of the influence of the nonideal square wave or pure DC output on gyro performance is fully developed for the first time, to the best of our knowledge. Further analysis shows that this is the transient response process after modulation by the triangular wave, and the process is related both to the parameters of the OFRR and the modulation frequency of the triangular wave. By sampling the steady-state signal of the distortion square wave, or by oversampling the distortion signal to get a number of data, and then accumulating and averaging these data to be demodulated, the distortion's effect can be considerably decreased.  相似文献   

15.
A theoretical model for simulation of airborne depth-sounding lidar is presented with the purpose of analyzing the influence from water surface waves on the ability to detect 1-m3 targets placed on the sea bottom. Although water clarity is the main limitation, sea surface waves can significantly affect the detectability. The detection probability for a target at a 9-m depth can be above 90% at 1-m/s wind and below 80% at 6-m/s wind for the same water clarity. The simulation model contains both numerical and analytical components. Simulated data are compared with measured data and give realistic results for bottom depths between 3 and 10 m.  相似文献   

16.
We present the results of our recent observations on 3 He crystals grown from the superfluid phase at 0.55 mK. The crystal images were obtained with a low-temperature multiple-beam interferometer. The angles between the crystal facets were measured by employing a phase-shift technique and true 3D shapes of the crystals were reconstructed on the basis of the obtained information. Three different types of facets (110), (100) and (211) were clearly visible in these experiments.  相似文献   

17.
Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers.  相似文献   

18.
A theoretical analysis is made of the mechanism for nonlinear diagnostics of gas inclusions in a liquid. It is shown that the modulation of the scattered acoustic wave amplitude increases appreciably near critical values of the pump field corresponding to weakly stable bubble states. Pis’ma Zh. Tekh. Fiz. 24, 18–23 (August 26, 1998)  相似文献   

19.
Results from systematic gas sensing experiments on polymer coated surface-transverse-wave (STW) and surface-acoustic-wave (SAW) based two-port resonators on rotated Y-cut quartz, operating at the same acoustic wavelength of 7.22 /spl mu/m, are presented. The acoustic devices are coated with chemosensitive films of different viscoelastic properties and thicknesses, such as solid hexamethyldisiloxane (HMDSO), semisolid styrene (ST), and soft allyl alcohol (AA). The sensor sensitivities to vapors of different chemical analytes are automatically measured in a sensor head, evaluated, and compared. It is shown that thin HMDSO- and ST-coated STW sensors are up to 3.8 times more sensitive than their SAW counterparts, while SAW devices coated with thick soft AA-films are up to 3.6 times more sensitive than the STW ones. This implies that SAWs are more suitable for operation with soft coatings while STWs perform better with solid and semisolid films. A close-to-carrier phase noise evaluation shows that the vapor flow homogeneity, the analyte concentration, its sorption dynamics, and the sensor oscillator design are the major limiting factors for the sensor noise and its resolution. A well designed ST-coated 700 MHz STW sensor provides a 178 kHz sensor signal at a 630 ppm concentration of tetra-chloroethylene and demonstrates short-term stability of 3/spl times/10/sup -9//s which results in a sensor resolution of about 7 parts per billion (ppb).  相似文献   

20.
A theoretical model for simulation of airborne depth-sounding lidar is presented with the purpose of analyzing the influence from water surface waves on the ability to detect 1-m(3) targets placed on the sea bottom. Although water clarity is the main limitation, sea surface waves can significantly affect the detectability. The detection probability for a target at a 9-m depth can be above 90% at 1-m/s wind and below 80% at 6-m/s wind for the same water clarity. The simulation model contains both numerical and analytical components. Simulated data are compared with measured data and give realistic results for bottom depths between 3 and 10 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号