首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the problem of exponential stability and l1‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l1‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with the problem of exponential H filtering for a class of continuous‐time switched linear system with interval time‐varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay‐derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H noise attenuation level. Based on the free‐weighting matrix approach and the average dwell technology, delay‐dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This article addresses the problem of finite‐time stability (FTS) and finite‐time contractive stability (FTCS) for switched nonlinear time‐delay systems (SNTDSs). By virtues of the Lyapunov‐Razumikhin method, Lyapunov functionals approach, and the comparison principle technique, we obtain some improved Razumikhin‐type theorems that verify FTS and FTCS property for SNTDSs. Moreover, our results allow the estimate of the upper bound of the derivatives for Lyapunov functions to be mode dependent functions which can be positive and negative. Meanwhile, the proposed results also improve the related existing results on the same topic by removing some restrictive conditions. Finally, two examples are presented to verify the effectiveness of our methods.  相似文献   

4.
Inspired by the idea of multiple Lyapunov functions and the average dwell time, we address the stability analysis of nonautonomous continuous‐time switched systems. First, we investigate nonautonomous continuous‐time switched nonlinear systems and successively propose sufficient conditions for their (uniform) stability, global (uniform) asymptotic stability, and global (uniform) exponential stability, in which an indefinite scalar function is utilized to release the nonincreasing requirements of the classical multiple Lyapunov functions. Afterwards, by using multiple Lyapunov functions of quadratic form, we obtain the corresponding sufficient conditions for (uniform) stability, global (uniform) asymptotic stability, and global exponential stability of nonautonomous switched linear systems. Finally, we consider the computation issue of our current results for a special class of nonautonomous switched systems (ie, rational nonautonomous switched systems), associated with two illustrative examples.  相似文献   

5.
This paper studies the stability problem of a class of linear switched systems with time‐varying delay in the sense of Hurwitz convex combination. By designing a parameter‐dependent switching law and using a new convex combination technique to deal with delay terms, a new stability criterion is established in terms of LMIs, which is dependent on the parameters of Hurwitz convex combination. The advantage of the new criterion lies in its less conservatism and simplicity. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, a unified mode‐dependent average dwell time (MDADT) stability result is investigated, which could be applied to switched systems with an arbitrary combination of stable and unstable subsystems. Combined with MDADT analysis method, we classified subsystems into two categories: switching stable subsystems and switching unstable subsystems. State divergence caused by switching unstable subsystems could be compensated by activating switching stable subsystems for a sufficiently long time. Based on the above considerations, a new globally exponentially stability condition was proposed for discrete‐time switched linear systems. Under the premise of not resolving the LMIs, the MDADT boundary of the new stability condition is allowed to be readjusted according to the actual switching signal. Furthermore, the new stability result is a generalization of the previous one, which is more suitable for the case of more unstable subsystems. Some simulation results are given to show the advantages of the theoretic results obtained.  相似文献   

7.
This article is concerned with the problem of state feedback control for a class of discrete-time switched singular systems with time-varying state delays under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the system modes. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence a stabilising switching law is first derived to guarantee the regularity, causality and exponential stability of the closed-loop system in the presence of asynchronous switching. The stabilising switching law is characterised by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper considers a class of stochastic systems referred to as stochastic switched systems of neutral type with time‐varying delay, which combines switched systems with neutral stochastic systems. The systems consist of subsystems of two forms: (i) only stable subsystems and (ii) both stable subsystems and unstable subsystems. By establishing an integral inequality, the exponential stability in pth(p≥1)‐moment for such systems with only stable subsystems is first considered. Then, by using an average dwell time approach, the exponential stability in pth(p≥1)‐moment for the second form is addressed. An important finding of this study is that when the average dwell time is chosen to be sufficiently large and the total activation time of unstable subsystems is relatively small compared with that of stable subsystems, the exponential stability in pth(p≥1)‐moment for such systems can be guaranteed. Two major advantages of these new results are that the differentiability or continuity of the delay function is not required compared with the existing results in the literature, and the proposed approaches can be used to consider the case when the neutral item and the stochastic perturbation are simultaneously presented. An example is provided to verify the effectiveness and potential of the theoretic results obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the problem of exponential stability for a class of linear discrete switched systems with constant delays.The switched systems consist of stable and unstable subsystems.Based on the average dwell time method, some switching signals will be found to guarantee exponential stability of these systems.The explicit state decay estimation is also given in the form of the solutions of linear matrix inequalities(LMIs).An example relating to networked control systems(NCSs) illustrates the effect...  相似文献   

10.
This paper studies stability of a general class of impulsive switched systems under time delays and random disturbances using multiple Lyapunov functions and fixed dwell‐time. In the studied system model, the impulses and switches are allowed to occur asynchronously. As a result, the switching may occur in the impulsive intervals and the impulses can occur in the switching intervals, which have great effects on system stability. Since the switches do not bring about the change of the system state, we study two cases in terms of the impulses, ie, the stable continuous dynamics case and the stable impulsive dynamics case. According to multiple Lyapunov‐Razumikhin functions and the fixed dwell‐time, Razumikhin‐type stability conditions are established. Finally, the obtained results are illustrated via a numerical example from the synchronization problem of chaotic systems.  相似文献   

11.
This paper studies the problem of output regulation for a class of switched nonlinear systems. Sufficient conditions for the problem to be solved are presented in terms of the average dwell‐time scheme. These conditions are obtained based on full information feedback laws and error feedback laws, respectively. The results extend the output regulation theory for non‐switched nonlinear systems to switched nonlinear systems. A simulation example also shows the validity of the results.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the exponential stability problems of discrete‐time and continuous‐time impulsive positive switched systems with mixed (discrete and distributed) time‐varying delays, respectively. By constructing novel copositive Lyapunov‐Krasovskii functionals and using the average dwell time technique, delay‐dependent sufficient conditions for the solvability of considered problems are given in terms of fairly simple linear matrix inequalities. Compared with the most existing results, by introducing an extra real vector, restrictive conditions on derivative of the time‐varying delays (less than 1) are relaxed, thus the obtained improved stability criteria can deal with a wider class of continuous‐time positive switched systems with time‐varying delays. Finally, two simple examples are provided to verify the validity of theoretical results.  相似文献   

13.
In this article, we are concerned with the problem on input‐to‐state stability (ISS) for discrete‐time time‐varying switched delayed systems. Some Krasovskii and Razumikhin ISS criteria are provided by using the notions of uniformly asymptotically stable (UAS) function and mode‐dependent average dwell time (MDADT). With the help of the concept of UAS function, the advantage of our results in this article is that the coefficients of the first‐order difference inequalities for the mode‐dependent Krasovskii functionals and mode‐dependent Razumikhin functions are allowed to be time‐varying, mode‐dependent, and can even take both positive and negative values, and the whole switched system can be allowed to have both ISS subsystems and non‐ISS subsystems. With the aid of the notion of MDADT, each subsystem can have its own average dwell time. As an application, we also provide an ISS criterion for discrete‐time time‐varying switched delayed Hopfield neural networks with disturbance inputs. Numerical simulations verify the effectiveness of the established criteria.  相似文献   

14.
15.
16.
This brief paper addresses the finite‐time stability problem of switched positive linear systems. First, the concept of finite‐time stability is extended to positive linear systems and switched positive linear systems. Then, by using the state transition matrix of the system and copositive Lyapunov function, we present a necessary and sufficient condition and a sufficient condition for finite‐time stability of positive linear systems. Furthermore, two sufficient conditions for finite‐time stability of switched positive linear systems are given by using the common copositive Lyapunov function and multiple copositive Lyapunov functions, a class of switching signals with average dwell time is designed to stabilize the system, and a computational method for vector functions used to construct the Lyapunov function of systems is proposed. Finally, a concrete application is provided to demonstrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This summary addresses the input‐to‐state stability (ISS) and integral ISS (iISS) problems of impulsive switched nonlinear time‐delay systems (ISNTDSs) under two asynchronous switching effects. In our investigated systems, impulsive instants and switching instants do not necessarily coincide with each other. Meanwhile, systems switching signals are not simultaneous with the corresponding controllers switching signals, which will induce instability seriously, and cause many difficulties and challenges. By utilizing methods of Lyapunov‐Krasovskii and Lyapunov‐Razumikhin, mode‐dependent average dwell time approach, and mode‐dependent average impulsive interval technique, some stability criteria are presented for ISNTDSs under two asynchronous switching effects. Our proposed results improve the related existing results on the same topic by removing some restrictive conditions and cover some existing results as special cases. Finally, some simulation examples are presented to illustrate the effectiveness and advantages of our results.  相似文献   

18.
In this paper, sufficient conditions are provided for the stability of switched retarded and neutral time‐delay systems with polytopic‐type uncertainties. It is assumed that the delay in the system dynamics is time‐varying and bounded. Parameter‐dependent Lyapunov functionals are employed to obtain criteria for the exponential stability of the system in the form of linear matrix inequality (LMI). Free‐weighting matrices are then provided to express the relationship between the system variables and the terms in the Leibniz–Newton formula. Numerical examples are presented to show the effectiveness of the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This note considers the problem of finite‐time stability (FTS) for switched nonlinear time‐varying systems. First, a relaxed condition is proposed to verify the FTS of nonlinear time‐varying systems by using an indefinite Lyapunov function. Then, the result obtained is extended to study the FTS of switched nonlinear time‐varying systems. Several relaxed conditions are given by using a common indefinite Lyapunov function and multiple indefinite Lyapunov functions. Moreover, the corresponding estimates on convergence regions and times of systems are also given. Comparing with the existing results, the conditions obtained allow the time derivative of Lyapunov functions of subsystems (or systems) to be indefinite and all subsystems to be not finite‐time stable or even unstable. Finally, a numerical example is given to illustrate the theoretical results.  相似文献   

20.
This paper addresses the problem of reachable set estimation and synthesis for a class of discrete‐time switched linear systems with time delay and bounded peak disturbance. Combined with the feature of mode‐dependent average dwell time switching, a new algorithm is developed to estimate the reachable set of switched system, which is both quasi‐time‐dependent and mode‐dependent. Then, the proposed method is applied to time‐delay system and a sufficient condition is presented to guarantee the asymptotic stability and estimate the bounding ellipsoid. Furthermore, the quasi‐time‐dependent controller is designed to stabilize the system and restrict the closed‐loop system states to an ellipsoidal bound. Examples are presented to illustrate the effectiveness and advantages of the obtained theorems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号