首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper deals with the H filtering problem for a class of discrete time‐varying systems with state saturations, randomly occurring nonlinearities as well as successive packet dropouts. Two mutually independent sequences of random variables that obey the Bernoulli distribution are employed to describe the random occurrence of the nonlinearities and packet dropouts. The purpose of the addressed problem is to design a time‐varying filter such that the H disturbance attenuation level is guaranteed, over a given finite‐horizon, for the filtering error dynamics in the presence of saturated states, randomly occurring nonlinearities, and successive packet dropouts. By introducing a free matrix with its infinity norm less than or equal to 1, the error state is bounded by a convex hull so that some sufficient conditions obtained via solving a certain set of recursive nonlinear matrix inequalities. Furthermore, the obtained results are extended to the case when state saturations are partial. Two numerical simulation examples are provided to demonstrate the effectiveness and applicability of the proposed filter design approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the security‐guaranteed filtering problem is studied for a class of nonlinear stochastic discrete time‐delay systems with randomly occurring sensor saturations (ROSSs) and randomly occurring deception attacks (RODAs). The nonlinearities in systems satisfy the sector‐bounded conditions, and the time‐varying delays are unknown with given lower and upper bounds. A novel measurement output model is proposed to reflect both the ROSSs and the RODAs. A new definition is put forward on the security level with respect to the noise intensity, the energy bound of the false signals, the energy of the initial system state, and the desired security degree. We aim at designing a filter such that, in the presence of ROSSs and RODAs, the filtering error dynamics achieves the prescribed level of security. By using the stochastic analysis techniques, a sufficient condition is first derived under which the filtering error system is guaranteed to have the desired security level, and then, the filter gain is designed by solving a linear matrix inequality with nonlinear constraints. Finally, a numerical example is provided to demonstrate the feasibility of the proposed filtering scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the distributed state estimation problem is investigated for a class of uncertain sensor networks. The target plant is described by a set of uncertain difference equations with both discrete-time and infinite distributed delays, where two random variables are introduced to account for the randomly occurring nonlinearities. The sensor measurement outputs are subject to randomly occurring sensor saturations due to the physical limitations of the sensors. Through available output measurements from each individual sensor and its neighboring sensors, this paper aims to design distributed state estimators to approximate the states of the target plant in a distributed way. Sufficient conditions are presented which not only guarantee the estimation error systems to be globally asymptotically stable in the mean square sense but also ensure the existence of the desired estimator gains.  相似文献   

5.
In this paper, the finite‐horizon H fault estimation problem is investigated for a class of uncertain nonlinear time‐varying systems subject to multiple stochastic delays. The randomly occurring uncertainties (ROUs) enter into the system due to the random fluctuations of network conditions. The measured output is quantized by a logarithmic quantizer before being transmitted to the fault estimator. Also, successive packet dropouts (SPDs) happen when the quantized signals are transmitted through an unreliable network medium. Three mutually independent sets of Bernoulli‐distributed white sequences are introduced to govern the multiple stochastic delays, ROUs and SPDs. By employing the stochastic analysis approach, some sufficient conditions are established for the desired finite‐horizon fault estimator to achieve the specified H performance. The time‐varying parameters of the fault estimator are obtained by solving a set of recursive linear matrix inequalities. Finally, an illustrative numerical example is provided to show the effectiveness of the proposed fault estimation approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the robust H finite‐horizon filtering problem for discrete time‐varying stochastic systems with multiple randomly occurred sector‐nonlinearities (MROSNs) and successive packet dropouts. MROSNs are proposed to model a class of sector‐like nonlinearities that occur according to the multiple Bernoulli distributed white sequences with a known conditional probability. Different from traditional approaches, in this paper, a time‐varying filter is designed directly for the addressed system without resorting to the augmentation of system states and measurement, which helps reduce the filter order. A new H filtering technique is developed by means of a set of recursive linear matrix inequalities that depend on not only the current available state estimate but also the previous measurement, therefore ensuring a better accuracy. Finally, two illustrative examples are used to demonstrate the effectiveness and applicability of the proposed filter design scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the issue of mean square cluster synchronisation in complex networks, which consist of non-identical nodes with randomly occurring non-linearities. In order to guarantee synchronisation, distributed controllers depending on the information from the neighbours in the same cluster are applied to each node, meanwhile, the control gains are supposed to be updated according to the given laws. Based on the Lyapunov stability theory, the sufficient synchronisation conditions are derived and proved theoretically. Finally, a numerical example is presented to demonstrate the effectiveness of the results.  相似文献   

8.
The saturation input control problem of discrete-time networked systems via adaptive event-triggered communication scheme is discussed in this paper. The criteria are derived by utilising a new Lyapunov functional to guarantee that the considered networked system with randomly occurring infinite distributed delays, random packet losses and sensor saturation is exponentially stable in mean square sense. A novel adaptive event-triggered law is proposed, which is dependent on the exponentially stable index α. The effectiveness of our proposed method is illustrated by both theoretical analysis and numerical simulations.  相似文献   

9.
This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.  相似文献   

10.
This paper deals with the synchronisation problem for an array of coupled complex discrete-time networks with the presence of randomly occurring information. The time-varying delays, parameter uncertainties and nonlinearities enter into the system in a random way and such randomly occurring time-delays, randomly occurring uncertainties and randomly occurring sector-like nonlinearities obey certain mutually uncorrelated Bernoulli-distributed white-noise sequences. By employing direct delay decomposition approach and constructing suitable Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the synchronisation criteria for the complex networks with randomly occurring information in terms of linear matrix inequalities. Finally, in numerical examples, synchronisation of Barabàsi Albert scale-free networks and chaotic synchronisation of Lorenz system are rendered to exemplify the effectiveness and applicability of the proposed results.  相似文献   

11.
This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.  相似文献   

12.
In this paper, we propose a strategy for distributed Kalman filtering over sensor networks, based on node selection, rather than on sensor fusion. The presented approach is particularly suitable when sensors with limited sensing capability are considered. In this case, strategies based on sensor fusion may exhibit poor results, as several unreliable measurements may be included in the fusion process. On the other hand, our approach implements a distributed strategy able to select only the node with the most accurate estimate and to propagate it through the whole network in finite time. The algorithm is based on the definition of a metric of the estimate accuracy, and on the application of an agreement protocol based on max-consensus. We prove the convergence, in finite time, of all the local estimates to the most accurate one at each discrete iteration, as well as the equivalence with a centralised Kalman filter with multiple measurements, evolving according to a state-dependent switching dynamics. An application of the algorithm to the problem of distributed target tracking over a network of heterogeneous range-bearing sensors is shown. Simulation results and a comparison with two distributed Kalman filtering strategies based on sensor fusion confirm the suitability of the approach.  相似文献   

13.
研究一类存在多包数据随机丢失非线性滤波系统的模糊滤波器设计问题, 采用T-S模糊模型对非线性系统进行建模, 并用已知概率分布的二进制切换序列来描述数据多包随机丢失现象. 基于线性矩阵不等式方法给出了模糊滤波器存在的充分条件, 该条件保证所设计的模糊滤波器使得滤波误差系统均方指数稳定且满足期望的耗散性能指标. 最后通过数字仿真例子说明了设计方法的有效性.  相似文献   

14.
本文针对无线传感器网络中的目标跟踪问题,研究了分布式量化卡尔曼滤波问题.由于网络中存在能量和带宽限制,传感器传输的数据必须经过量化处理.考虑一个线性离散随机动态系统,首先提出了一种动态Lloyd-Max量化器并设计了其在线更新方案,然后基于贝叶斯原理导出了递归形式的最优量化卡尔曼滤波器,同时给出了一种渐近等价的迭代算法,并进一步分析了量化卡尔曼滤波器的稳定性.最后,仿真结果验证了所设计算法的可行性与有效性.  相似文献   

15.
This paper is concerned with the event-triggered distributed state estimation problem for a class of uncertain stochastic systems with state-dependent noises and randomly occurring uncertainties over sensor networks. An event-triggered communication scheme is proposed in order to determine whether the measurements on each sensor should be transmitted to the estimators or not. The norm-bounded uncertainty enters into the system in a random way. Through available output measurements from not only the individual sensor but also its neighbouring sensors, a sufficient condition is established for the desired distributed estimator to ensure that the estimation error dynamics are exponentially mean-square stable. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities, and then the explicit expression is given for the distributed estimator gains. Finally, a simulation example is provided to show the effectiveness of the proposed event-triggered distributed state estimation scheme.  相似文献   

16.
In this paper, the state estimation problem is investigated for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays. The norm-bounded uncertainties enter into the system in a randomly way, and such randomly occurring uncertainties (ROUs) obey certain Bernoulli distributed white noise sequence with known conditional probability. By constructing a new Lyapunov–Krasovskii functional, sufficient conditions are proposed to guarantee the convergence of the estimation error for all discrete time-varying delays, ROUs and distributed sensor delays. Subsequently, the explicit form of the estimator parameter is derived by solving two linear matrix inequalities (LMIs) which can be easily tested by using standard numerical software. Finally, a simulation example is given to illustrate the feasibility and effectiveness of the proposed estimation scheme.  相似文献   

17.
钱伟  张祥林  赵运基  费树岷 《控制与决策》2023,38(11):3137-3146
传感器网络环境中普遍存在的节点饱和、测量缺失、时滞等信息不完全现象,必然导致系统整体性能变差.研究随机饱和与测量缺失影响下非线性系统的分布式${H_\infty  相似文献   

18.
This study seeks to address the delay-probability-dependent stability problem for a new class of stochastic neural networks with randomly occurring uncertainties, neutral type delay, distributed delay and probability-distribution delay. The system not only includes the randomly occurring uncertainties of parameters (ROUPs) but also contains stochastic disturbances, which is not yet investigated in existing papers. First, several stochastic variables which obey Bernoulli distribution are introduced to describe the ROUPs, based on which a new model is built. Second, through fully considering the information on kinds of delays and utilising general delay-partitioning method, an improved Lyapunov–Krasovskii function (LKF) is constructed. Combining Itô's differential formula, general bounding, free-weighting matrix and stochastic methods, a new delay-probability-dependent robustly mean square stable criterion is formulated in terms of linear matrix inequality. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed results.  相似文献   

19.
In this paper, we study the distributed model predictive control (MPC) of polytopic uncertain systems with quantised communication and packet dropouts. The model of the whole plant is divided into a certain number of incomplete subsystems. Due to the nature of the distributed control structure, there is generally a lack of information about the state of the overall system. Each subsystem shares its information with neighbour subsystems via reliable connection. Distributed MPC controllers are designed for each subsystem by solving the linear matrix inequalities optimisation problem. The distributed state feedback laws are quantised and transmitted via communication network. An iterative algorithm is presented to make coordination among distributed state feedback laws. The communication is assumed to be affected by random packet dropouts in a representation of Bernoulli distributed white sequences with known conditional probabilities. A case study is carried out to demonstrate the effectiveness of the proposed distributed MPC technique.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号