首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with observer‐based H output tracking control for networked control systems. An observer‐based controller is implemented through a communication network to drive the output of a controlled plant to track the output of a reference model. The inputs of the controlled plant and the observer‐based tracking controller are updated in an asynchronous way because of the effects of network‐induced delays and packet dropouts in the controller‐to‐actuator channel. Taking the asynchronous characteristic into consideration, the resulting closed‐loop system is modeled as a system with two interval time‐varying delays. A Lyapunov–Krasovskii functional, which makes use of information about the lower and upper bounds of the interval time‐varying delays, is constructed to derive a delay‐dependent criterion such that the closed‐loop system has a desired H tracking performance. Notice that a separation principle cannot be used to design an observer gain and a control gain due to the asynchronous inputs of the plant and the controller. Instead, a novel design algorithm is proposed by applying a particle swarm optimization technique with the feasibility of the stability criterion to search for the minimum H tracking performance and the corresponding gains. The effectiveness of the proposed method is illustrated by an example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper addresses the finite horizon H control problem for a class of discrete‐time nonlinear Markov jump systems with multiplicative noise and nonlinear feedback device. The system nonlinearity occurs in a random way specified by a Bernoulli process, whereas the actuator and sensor nonlinearities are restricted to a sector region. Both the state and the dynamic output feedback H controllers are devised in terms of difference LMIs. The proposed approach not only allows the resulting system to achieve a prescribed disturbance attenuation level, but also enables the output of actuator/sensor to meet the designated sector condition. Moreover, it is also shown that our approach is well‐adapted for dealing with the discrete‐time Markov jump systems with saturated actuator and sensor. Finally, a backward iterative algorithm is provided to solve the obtained difference LMIs and a numerical example is presented to verify the efficiency of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The incremental gain is proposed as an alternative to the usual gain for designing nonlinear H controllers. Considering a class of plants with Lipschitz nonlinearities and using linear matrix inequalities, a state feedback controller is designed such that the closed‐loop system is exponentially stable in the absence of disturbance inputs and has incremental gain less than or equal to a minimized number in the presence of disturbances as well as model uncertainties. Moreover, a norm‐wise robustness analysis of the proposed technique against nonlinear uncertainties has been accomplished. Our result is verified through stabilization of both certain and uncertain systems in an incremental sense and also input tracking of a chaotic plant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on a new H controller design issue for networked control systems with external disturbance as well as random time delays and packet dropouts in forward and feedback channels, which are modeled by multiple Markov chains in a unified style. The output feedback controller is designed to stabilize the networked control system and also achieves the prescribed H disturbance attenuation level. The addressed controller design problem is transformed into a nonlinear minimization problem with LMI constraints. An illustrative example is provided to show the effectiveness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The paper investigates the asynchronous H filtering design problem for continuous‐time linear systems with Markov jump. The hidden Markov jump principle is applied to represent the asynchronous situation between the target system and the designed filter. Via a Lyapunov technique, two sufficient conditions are developed to guarantee that the filtering error system is stochastically stable with a prescribed H noise attenuation level. Furthermore, three filtering design approaches are developed in the form of linear matrix inequalities. Finally, one example is provided to show the effectiveness and feasibility of the developed methods.  相似文献   

6.
In this paper, a generalized robust H filtering method is proposed for a class of singular Markovian jump systems, whose generality is mainly embodied that the desired filter could bear perturbances in terms of uncertainties on its parameter matrices. Firstly, an LMI condition of robust mode‐dependent filter is developed. Based on the given result, a new approach to mode‐independent H filter is presented, which establishes a direct connection between mode‐dependent and mode‐independent filters. Secondly, when the transition rate matrix is with elementwise bounded uncertainties or partially unknown, sufficient conditions of such robust mode‐dependent and mode‐independent filters are all developed within LMI frameworks. Finally, a numerical example is used to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a solution to the singular H control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the H control problem for a class of systems with bounded random delays and consecutive packet dropouts that exist in both sensor‐to‐controller channel and controller‐to‐actuator channel during data transmission. A new model is developed to describe possible random delays and packet dropouts by two groups of Bernoulli distributed stochastic variables. To avoid the state augmentation, a full‐order observer‐based feedback controller is designed via LMI approach. Based on the Lyapunov theory, a sufficient condition is provided to guarantee the closed‐loop networked system to be asymptotically mean‐square stable and achieve the prescribed H disturbance‐rejection‐attenuation level. The simulation examples illustrate the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the H filter design for continuous‐time singular systems with Markovian jump parameters, whose system mode is transmitted through an unreliable network. In contrast to the traditionally mode‐dependent or mode‐independent filtering method, a new partially mode‐dependent filter is established via using a mode‐dependent Lyapunov function, where the stochastic property of mode available to a filter is considered. Sufficient conditions for the existence of H filter are obtained as strict linear matrix inequalities. Finally, numerical examples are used to show the effectiveness of the given theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, the problem of robust finite‐time H synchronization control is investigated for a class of uncertain discrete‐time master‐slave systems with Markovian switching parameters in the observer‐based case. Parameter uncertainties are assumed to be norm‐bounded, and the polyhedral character is utilized to describe the transition probabilities of nonhomogeneous Markov chain. By using stochastic Lyapunov function method and finite‐time analysis techniques, novel sufficient conditions that include the master‐slave parameters are obtained for designing an observer‐based finite‐time H synchronization control law in terms of linear matrix inequalities. The effectiveness of the proposed theoretical scheme is finally demonstrated by some simulations.  相似文献   

11.
We present a robust H observer for a class of nonlinear discrete‐time systems. The class under study includes an unknown time‐varying delay limited by upper and lower bounds, as well as time‐varying parametric uncertainties. We design a nonlinear H observer, by using the upper and lower bounds of the delay, that guarantees asymptotic stability of the estimation error dynamics and is also robust against time‐varying parametric uncertainties. The described problem is converted to a standard optimization problem, which can be solved in terms of linear matrix inequalities (LMIs). Then, we expand the problem to a multi‐objective optimization problem in which the maximum admissible Lipschitz constant and the minimum disturbance attenuation level are the problem objectives. Finally, the proposed observer is illustrated with two examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the problem of finite‐time H control is addressed for a class of discrete‐time switched nonlinear systems with time delay. The concept of H finite‐time boundedness is first introduced for discrete‐time switched delay systems. Next, a set of switching signals are designed by using the average dwell time approach, under which some delay‐dependent sufficient conditions are derived to guarantee the H finite‐time boundedness of the closed‐loop system. Then, a finite‐time H state feedback controller is also designed by solving such conditions. Furthermore, the problem of uniform finite‐time H stabilization is also resolved. All the conditions are cast into linear matrix inequalities, which can be easily checked by using recently developed algorithms for solving linear matrix inequalities. A numerical example and a water‐quality control system are provided to demonstrate the effectiveness of the main results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the H control problem for a class of systems with repeated scalar nonlinearities and multiple missing measurements. The nonlinear system is described by a discrete‐time state equation involving a repeated scalar nonlinearity, which typically appears in recurrent neural networks. The measurement missing phenomenon is assumed to occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator, where the missing probability for each sensor/actuator is governed by an individual random variable satisfying a certain probabilistic distribution in the interval [0 1]. Attention is focused on the analysis and design of an observer‐based feedback controller such that the closed‐loop control system is stochastically stable and preserves a guaranteed H performance. Sufficient conditions are obtained for the existence of admissible controllers. It is shown that the controller design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. Three examples are provided to illustrate the effectiveness of the developed theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

15.
The problem of infinite‐horizon H state‐feedback tracking control for linear continuous time‐invariant retarded systems with stochastic parameter uncertainties is investigated. Two tracking patterns are considered depending on the nature of the reference signal; that is, whether it is measured online or previewed in a fixed time‐interval ahead. The stochastic uncertainties appear in the dynamics matrices for both the retarded and the non‐retarded states of the system. The delayed system is transformed via the input–output approach, to an uncertain norm‐bounded system. A new method that efficiently yields a min–max strategy to the solution of each of the aforementioned two cases is suggested where, given a specific reference signal, the controller plays against nature, which chooses the maximizing energy‐bounded disturbance. The theoretical results are demonstrated by two examples that show the impact of the delay length and the preview length on the system performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with network‐based H stabilization for stochastic systems, where network‐induced delays, packet dropouts, and packet disorders are taken into account simultaneously. The packet disorders arising from both the sampler‐to‐controller channel and the controller‐to‐actuator channel are considered by introducing a logic controller and a logic zero‐order hold. The network‐induced delays and packet dropouts are modeled as a constant delay plus a non‐differentiable time‐varying delay in the input. By employing Lyapunov–Krasovskii functional approach, we establish results that parallel well‐known bounded real Lemmas. More specifically, these results provide conditions to bound the H level of the system, which means the worst case energy of the output of the system when subjected to a unitary norm deterministic disturbance signal. On the basis of these results, suitable network‐based H controllers are designed by using cone complementary linearization method. An air vehicle system is finally taken as an example to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a new method to construct a decentralized nonlinear robust H controller for a class of large‐scale nonlinear uncertain systems. The admissible uncertainties and nonlinearities in the system satisfy integral quadratic constraints and global Lipschitz conditions, respectively. The decentralized controller, which is required to be stable, is capable of exploiting known nonlinearities and interconnections between subsystems without treating them as uncertainties. Instead, additional uncertainties are introduced because of the discrepancies between nondecentralized and decentralized nonlinear output feedback controllers. The H control objective is to achieve an absolutely stable closed‐loop system with a specified disturbance attenuation level. A solution to this control problem involves stabilizing solutions to algebraic Riccati equations parametrized by scaling constants corresponding to the uncertainties and nonlinearities. This formulation is nonconvex; hence, an evolutionary optimization method is applied to solve the control problem considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the problem of exponential H filtering for stochastic systems with time delays and Markovian jumping parameters. On the basis of Lyapunov–Krasovskii functional theory and generalized Finsler lemma, a delay‐dependent bounded real lemma is established without using any model transformations, bounding techniques for cross terms, or additional free matrix variables. The obtained bounded real lemma guarantees that the filtering error system is both mean‐square exponentially stable and almost surely exponentially stable with a prescribed H noise attenuation level. Then an exponential H filter is designed for stochastic retarded Markovian jump systems in terms of a set of LMIs. Meanwhile, the mathematical equivalence of the proposed method to one recent method is presented, but our proposed method is more computationally efficient with fewer matrix variables than that recent method. The validity of the method is verified by a numerical example.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This paper investigates the problem of designing a nonlinear H output feedback controller for a class of polynomial discrete‐time systems. In general, this problem is hard to be formulated in a convex form because the relation between the control input and the Lyapunov function is always not jointly convex. Therefore, the problem cannot be solved via semidefinite programming (SDP). On the basis of the sum of squares (SOS) approach and incorporation of an integrator into the controller, sufficient conditions for the existence of a nonlinear H output feedback controller are given in terms of SOS conditions, which can be solved by an SDP solver. In contrast to the existing methods, a less conservative result is obtained. Finally, numerical examples are used to demonstrate the validity of this integrator approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号