共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with observer‐based H ∞ output tracking control for networked control systems. An observer‐based controller is implemented through a communication network to drive the output of a controlled plant to track the output of a reference model. The inputs of the controlled plant and the observer‐based tracking controller are updated in an asynchronous way because of the effects of network‐induced delays and packet dropouts in the controller‐to‐actuator channel. Taking the asynchronous characteristic into consideration, the resulting closed‐loop system is modeled as a system with two interval time‐varying delays. A Lyapunov–Krasovskii functional, which makes use of information about the lower and upper bounds of the interval time‐varying delays, is constructed to derive a delay‐dependent criterion such that the closed‐loop system has a desired H ∞ tracking performance. Notice that a separation principle cannot be used to design an observer gain and a control gain due to the asynchronous inputs of the plant and the controller. Instead, a novel design algorithm is proposed by applying a particle swarm optimization technique with the feasibility of the stability criterion to search for the minimum H ∞ tracking performance and the corresponding gains. The effectiveness of the proposed method is illustrated by an example. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
In this paper, a generalized robust H ∞ filtering method is proposed for a class of singular Markovian jump systems, whose generality is mainly embodied that the desired filter could bear perturbances in terms of uncertainties on its parameter matrices. Firstly, an LMI condition of robust mode‐dependent filter is developed. Based on the given result, a new approach to mode‐independent H ∞ filter is presented, which establishes a direct connection between mode‐dependent and mode‐independent filters. Secondly, when the transition rate matrix is with elementwise bounded uncertainties or partially unknown, sufficient conditions of such robust mode‐dependent and mode‐independent filters are all developed within LMI frameworks. Finally, a numerical example is used to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
4.
This paper focuses on proposing novel conditions for stability analysis and stabilization of the class of nonlinear fractional‐order systems. First, by considering the class of nonlinear fractional‐order systems as a feedback interconnection system and applying small‐gain theorem, a condition is proposed for L2‐norm boundedness of the solutions of these systems. Then, by using the Mittag‐Leffler function properties, we show that satisfaction of the proposed condition proves the global asymptotic stability of the class of nonlinear fractional‐order systems with fractional order lying in (0.5, 1) or (1.5, 2). Unlike the Lyapunov‐based methods for stability analysis of fractional‐order systems, the new condition depends on the fractional order of the system. Moreover, it is related to the H∞‐norm of the linear part of the system and it can be transformed to linear matrix inequalities (LMIs) using fractional‐order bounded‐real lemma. Furthermore, the proposed stability analysis method is extended to the state‐feedback and observer‐based controller design for the class of nonlinear fractional‐order systems based on solving some LMIs. In the observer‐based stabilization problem, we prove that the separation principle holds using our method and one can find the observer gain and pseudostate‐feedback gain in two separate steps. Finally, three numerical examples are provided to demonstrate the advantage of the novel proposed conditions with the previous results. 相似文献
5.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H∞ control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H∞ control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
6.
The incremental gain is proposed as an alternative to the usual gain for designing nonlinear H ∞ controllers. Considering a class of plants with Lipschitz nonlinearities and using linear matrix inequalities, a state feedback controller is designed such that the closed‐loop system is exponentially stable in the absence of disturbance inputs and has incremental gain less than or equal to a minimized number in the presence of disturbances as well as model uncertainties. Moreover, a norm‐wise robustness analysis of the proposed technique against nonlinear uncertainties has been accomplished. Our result is verified through stabilization of both certain and uncertain systems in an incremental sense and also input tracking of a chaotic plant. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
We study the stability and robustness of a large platoon of vehicles, where each vehicle is modeled as a double integrator, for two decentralized control architectures: predecessor following and symmetric bidirectional. In the predecessor‐following architecture, the control action on each agent only depends on the information from its immediate front neighbor, whereas in the symmetric bidirectional architecture, it depends equally on the information from both its immediate front neighbor and back neighbor. We prove asymptotic stability of the formation for a class of nonlinear controllers with sector nonlinearity, with the linear controller as a special case. We show that the convergence rate of the predecessor‐following architecture is much faster than that of the symmetric bidirectional architecture. However, the predecessor‐following architecture suffers high algebraic growth of initial errors. We also establish scaling laws (with N) of certain H ∞ norms of the formation that measure its robustness to external disturbances for the linear case. It is shown that the robustness performance grows geometrically in N for predecessor‐following architecture but only polynomially in N for symmetric‐bidirectional architecture. Extensive numerical simulations are conducted to verify the predictions for the linear case and empirically estimate the corresponding performance metrics for a saturation‐type nonlinear controller. On the basis of the analytical and numerical results, it is seen that the symmetric bidirectional architecture outperforms the predecessor‐following architecture in all measures of performance. Within the predecessor‐following architecture, the nonlinear controller is seen to perform better in general than the linear one. A number of design guidelines are provided on the basis of these conclusions. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
We present a robust H ∞ observer for a class of nonlinear discrete‐time systems. The class under study includes an unknown time‐varying delay limited by upper and lower bounds, as well as time‐varying parametric uncertainties. We design a nonlinear H ∞ observer, by using the upper and lower bounds of the delay, that guarantees asymptotic stability of the estimation error dynamics and is also robust against time‐varying parametric uncertainties. The described problem is converted to a standard optimization problem, which can be solved in terms of linear matrix inequalities (LMIs). Then, we expand the problem to a multi‐objective optimization problem in which the maximum admissible Lipschitz constant and the minimum disturbance attenuation level are the problem objectives. Finally, the proposed observer is illustrated with two examples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
This paper addresses the finite horizon H ∞ control problem for a class of discrete‐time nonlinear Markov jump systems with multiplicative noise and nonlinear feedback device. The system nonlinearity occurs in a random way specified by a Bernoulli process, whereas the actuator and sensor nonlinearities are restricted to a sector region. Both the state and the dynamic output feedback H ∞ controllers are devised in terms of difference LMIs. The proposed approach not only allows the resulting system to achieve a prescribed disturbance attenuation level, but also enables the output of actuator/sensor to meet the designated sector condition. Moreover, it is also shown that our approach is well‐adapted for dealing with the discrete‐time Markov jump systems with saturated actuator and sensor. Finally, a backward iterative algorithm is provided to solve the obtained difference LMIs and a numerical example is presented to verify the efficiency of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
This paper proposes a robust H ∞ ‐based adaptive backstepping control scheme for the output stabilization of a special class of cascaded nonlinear systems. This kind of systems possess the feature that the first sub‐equation is a linear perturbed system, whereas the rest ones perform a general semi‐strict feedback form. Different from the conventional backstepping design approach, the special cascaded structure ensures to introduce the H ∞ technique to the backstepping procedure such that both the robust performance and the robust stability can be simultaneously guaranteed. Within the Lyapunov framework, the proposed control scheme is proved to guarantee (i) the uniformly ultimate boundedness of the system signals with a bound that can be made arbitrarily small by suitably choosing control parameters; (ii) asymptotic output stabilization as long as the uncertain nonlinearities and external disturbances vanish; and (iii) ‐performance of the closed‐loop system. A space interception scenario is utilized to demonstrate the effectiveness of the proposed control scheme. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
In this paper, the distributed H ∞ robust control problem synthesized with transient performance is investigated for a group of autonomous agents governed by uncertain general linear node dynamics. Based on the relative information between neighboring agents and some information of other agents, distributed state‐feedback and observer‐type output‐feedback control protocols are designed and analyzed, respectively. By using tools from robust control theory, conditions for the existence of controllers for solving such a problem are established. It is shown that the problem of distributed H ∞ robust control synthesized with transient performance can be converted to the H ∞ control problem synthesized with transient performance for decoupled linear systems of the same low dimensions. Finally, simulation examples are provided to illustrate the effectiveness of the design. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
The disturbance attenuation and robust disturbance attenuation problems for Hamiltonian systems in the discrete‐time setting are considered and some new results are presented. The new results are derived utilizing the recently presented dissipativity equality obtained by adding the dissipation rate function to the classical dissipativity inequality. A selection of the dissipation rate function yields new results. These results include a condition on the dissipation structure of the system to achieve the desired disturbance attenuation level and gives direct construction of optimal control laws for any desired disturbance attenuation level. The results remove the need to solve Hamilton–Jacobi–Isaacs inequalities. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
The paper investigates the asynchronous H∞ filtering design problem for continuous‐time linear systems with Markov jump. The hidden Markov jump principle is applied to represent the asynchronous situation between the target system and the designed filter. Via a Lyapunov technique, two sufficient conditions are developed to guarantee that the filtering error system is stochastically stable with a prescribed H∞ noise attenuation level. Furthermore, three filtering design approaches are developed in the form of linear matrix inequalities. Finally, one example is provided to show the effectiveness and feasibility of the developed methods. 相似文献
14.
A. Astolfi 《国际强度与非线性控制杂志
》1997,7(7):727-740
》1997,7(7):727-740
This paper presents a solution to the singular H∞ control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H∞ technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd. 相似文献
15.
The stochastic finite‐time H∞ filtering issue for a class of nonlinear continuous‐time singular semi‐Markov jump systems is discussed in this paper. Firstly, sufficient conditions on singular stochastic H∞ finite‐time boundedness for the filtering error system are established. The existence of a unique solution for the corresponding system is also ensured. Secondly, based on the bounds of the time‐varying transition rate, without imposing constraints on slack variables, a novel approach to finite‐time H∞ filter design is proposed in the forms of strict LMIs, which guarantees the filtering error system is singular stochastic H∞ finite‐time bounded and of a unique solution. Compared with the existing ones, the presented results reveal less conservativeness. Finally, one numerical example is exploited to testify the advantage of the proposed design technique. 相似文献
16.
This paper proposes an integrated fault estimation and fault‐tolerant control (FTC) design for Lipschitz non‐linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non‐linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H∞ optimization with a single‐step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single‐link manipulator example is given to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
This paper investigates, by using an approach, the problems of stochastic stability and control for a class of interconnected systems with Markovian jumping parameters. Both cases of finite‐ and infinite‐horizon are studied. It is shown that the problems under consideration can be solved if a set of coupled differential or algebraic Riccati equations are solvable. 相似文献
18.
This paper is concerned with the robust H ∞ filter design for a class of uncertain singular time‐delayed Markovian jump systems, whose transition rate matrix has elementwise bounded uncertainties. By the LMI approach, a novel bounded real lemma is proposed such that the singular Markovian jump system is robustly exponentially mean‐square admissible with a prescribed H ∞ performance index. Based on this, a sufficient condition for the existence of a robust H ∞ filter is developed in terms of LMIs. Finally, a numerical example is provided to show the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
The disturbance observer (DOB)‐based controller is widely used to estimate and suppress disturbance in motion control system. Because the low‐pass filter (Q‐filter) in DOB decides the performances of disturbance suppression, noise rejection, and robust stability against system uncertainties, design of Q‐filter is the principal task in DOB construction. This paper presents a systematic scheme for Q‐filter design based on H∞ norm optimization. Cost function for optimization is proposed by considering performance and relative order condition of the Q‐filter. The norm minimization problem is then transformed to a standard H∞ control problem. Furthermore, the relationship between performance and frequency weighting functions is investigated based on which selection of weighting functions is presented. Simulation results validate the global optimality and systematicness of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
This paper is concerned with the decentralized H ∞ controller synthesis problem for discrete‐time LTI systems. Despite of intensive research efforts over the last several decades, this problem is believed to be nonconvex and still outstanding in general. Therefore, most of existing approaches resort to heuristic optimization algorithms that do not allow us to draw any definite conclusion on the quality of the designed controllers. To get around this difficulty, in this paper, we propose convex optimization procedures for computing lower bounds of the H ∞ performance that is achievable via decentralized LTI controllers of any order. In particular, we will show that sharpened lower bounds can be obtained by making good use of structures of the LTI plant typically observed in the decentralized control setting. We illustrate via numerical examples that these lower bounds are indeed useful to ensure the good quality of decentralized controllers designed by a heuristic optimization. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献