首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Failure mode and effects analysis (FMEA) is a widely used technique for assessing the risk of potential failure modes in designs, products, processes, system, and services. One of the main problems with FMEA is the need to address a variety of assessments given by FMEA team members and the sequence of the failure modes according to the degree of risk factors. Many different methods have been proposed to improve the traditional FMEA, which is impractical when the risk assessments given by multiple experts to one failure mode are imprecise, incomplete, or inconsistent. However, the existing methods cannot adequately handle these types of uncertainties. In this paper, a new risk priority model based on D numbers and technique for the order of preference by similarity to ideal solution (TOPSIS) is proposed to evaluate the risk in FMEA. In the proposed model, the assessments given by the FMEA team members are represented by D numbers, where a new feasible and effective method can effectively represent the uncertain information. The TOPSIS method, a multicriteria decision‐making method is presented to rank the preference of failure modes with respect to risk factors. Finally, an application of the failure modes of the rotor blades of an aircraft turbine is provided to illustrate the efficiency of the proposed method.  相似文献   

2.
Failure mode and effects analysis (FMEA) is a widely used risk management technique for identifying the potential failures from a system, design, or process and determining the most serious ones for risk reduction. Nonetheless, the traditional FMEA method has been criticized for having many deficiencies. Further, in the real world, FMEA team members are usually bounded rationality, and thus, their psychological behaviors should be considered. In response, this study presents a novel risk priority model for FMEA by using interval two‐tuple linguistic variables and an integrated multicriteria decision‐making (MCDM) method. The interval two‐tuple linguistic variables are used to capture FMEA team members' diverse assessments on the risk of failure modes and the weights of risk factors. An integrated MCDM method based on regret theory and TODIM (an acronym in Portuguese for interactive MCDM) is developed to prioritize failure modes taking experts' psychological behaviors into account. Finally, an illustrative example regarding medical product development is included to verify the feasibility and effectiveness of the proposed FMEA. By comparing with other existing methods, the proposed linguistic FMEA approach is shown to be more advantageous in ranking failure modes under the uncertain and complex environment.  相似文献   

3.
Failure mode and effect analysis (FMEA) is a powerful risk discerning technique for identifying, evaluating, and reducing possible failures of products or processes. However, the classical FMEA has been criticized for inherent limitations, such as equal weights of risk elements and lack of capability in handling inaccurate information. Although fuzzy-based modified FMEA methods are frequently utilized to handle vagueness of experts' judgments, they still have some drawbacks, for example, requiring extra assumptions, neglecting experts' bounded rationality and psychological effects, lacking consideration of randomness, and only considering three classical risk elements among most of them. Therefore, this study develops an extended risk assessment method to enhance the performance of FMEA, which integrates the superiority of rough number theory in handling subjective and inaccurate information and the advantage of cloud model theory in reflecting the randomness of qualitative evaluations. Moreover, two synthetic weighting methods are developed to determine the weights of risk elements and handle the experts' individual effects, respectively, which consider both subjective and objective aspects. In addition, maintenance is added into the classical risk elements, and then a hierarchical structure containing four risk dimensions is built to evaluate failures' risk levels comprehensively. Finally, an application case to demonstrate the effectiveness of the developed FMEA model is presented.  相似文献   

4.
Failure mode and effects analysis (FMEA) is a prospective risk assessment tool used to identify, assess, and eliminate potential failure modes (FMs) in various industries to improve security and reliability. However, the traditional FMEA method has been criticized for several shortcomings and even the improved FMEA methods based on predefined linguistic terms cannot meet the needs of FMEA team members' diversified opinion expressions. To solve these problems, a novel FMEA method is proposed by integrating Bayesian fuzzy assessment number (BFAN) and extended gray relational analysis‐technique for order preference by similarity to ideal solution (GRA‐TOPSIS) method. First, the BFANs are used to flexibly describe the risk evaluation results of the identified failure modes. Second, the Hausdorff distance between BFANs is calculated by using the probability density function (PDF). Finally, on the basis of the distance, the extended GRA‐TOPSIS method is applied to prioritize failure modes. A simulation study is presented to verify the effectiveness of the proposed approach in dealing with vague concepts and show its advantages over existing FMEA methods. Furthermore, a real case concerning the risk evaluation of aero‐engine turbine and compressor blades is provided to illustrate the practical application of the proposed method and particularly show the potential of using the BFANs in capturing FMEA team members' diverse opinions.  相似文献   

5.
Failure mode and effect analysis (FMEA) is an effective quality tool to eliminate the risks and enhance the stability and safety in the fields of manufacturing and service industry. Nevertheless, the conventional FMEA has been criticized for its drawbacks in the evaluation process of risk factors or the determination of risk priority number (RPN), which may lead to inaccurate evaluation results. Therefore, in this paper, we develop a novel FMEA method based on rough set and interval probability theories. The rough set theory is adopted to manipulate the subjectivity and uncertainty of experts' assessment and convert the evaluation values of risk factors into interval numbers. Meanwhile, the interval exponential RPN (ERPN) is used to replace the traditional RPN due to its superior properties, eg, solving the problems of duplicate numbers and discontinuity of RPN values. Furthermore, an interval probability comparison method is proposed to rank the risk priority of each failure mode for avoiding the information loss in the calculation process of RPN. Finally, a real case study is presented, and the comparison analysis among different FMEA methods is conducted to demonstrate the reliability and effectiveness of the proposed FMEA method.  相似文献   

6.
Failure mode and effect analysis (FMEA) is a tool used to define, identify, and prevent known or unknown potential risks. An improved FMEA based on interval triangular fuzzy numbers (IVF) and fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is proposed in this study to solve problems of expression and processing of uncertain information, weights of risk factors, and ranking of failure modes in traditional FMEA. Linguistic variables are used to evaluate failure modes level and relative importance of risk factors and are expressed via interval-valued triangular fuzzy number. Determining the subjective weights of risk factors using fuzzy AHP, calculating the objective weights of risk factors using the extended VIKOR method, and obtaining the comprehensive weights of risk factors via ICWGT are proposed for solving the weight problem of risk factors. Finally, the fuzzy VIKOR method is used to rank risk priority of failure modes. The proposed method is used to evaluate workpiece box system of CNC gear milling machine and the results are compared with the findings of other methods to verify effectiveness and rationality of the proposed method.  相似文献   

7.
This paper proposes a time-varying failure mode and effect analysis (FMEA) method based on interval-valued spherical fuzzy theory, which not only improves the limitations in evaluating, weighting, and ranking but also considers the effect of time change. The process of distinguishing time changes enables the FMEA to have dynamic recognition capability, enabling it to identify critical failure modes more accurately. The interval-valued spherical fuzzy theory is used to deal with the uncertainty of intuitionistic linguistic evaluations. The advantages of two traditional approaches are combined to improve the weight determined method. Risk factors are divided into subjective and objective types. In the subjective risk factors, which are severity (S) and detection (D), the consistency of judgment is used as the acceptance standard. In the objective risk factors, which are occurrence (O), the time-varying characteristics are considered. The occurrence in a certain period is expressed as the integral of failure intensity in the time period. Interval-valued spherical fuzzy exponential risk priority number is proposed as the criterion for measuring the priority of failure modes. The effectiveness of the proposed method is verified using an example of spindle.  相似文献   

8.
Failure mode and effect analysis (FMEA) is a powerful tool for defining, identifying, and eliminating potential failures from the system, design, process, or service before they reach the customer. Since its appearance, FMEA has been extensively used in a wide range of industries. However, the conventional risk priority number (RPN) method has been criticized for having a number of drawbacks. In addition, FMEA is a group decision behavior and generally performed by a cross‐functional team. Multiple experts tend to express their judgments on the failure modes by using multigranularity linguistic term sets, and there usually exists uncertain and incomplete assessment information. In this paper, we present a novel FMEA approach combining interval 2‐tuple linguistic variables with gray relational analysis to capture FMEA team members’ diversity opinions and improve the effectiveness of the traditional FMEA. An empirical example of a C‐arm X‐ray machine is given to illustrate the potential applications and benefits of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Failure mode and effect analysis (FMEA), a multidisciplinary reliability analysis tool based on team evaluations, has been widely used in various industries. There are three critical issues in FMEA: the conversion of linguistic evaluations, the weights of risk factors, and the ranking mechanism of failure modes. Scholars have used various fuzzy theories and multi-attribute decision-making (MADM) methods to improve traditional FMEA, but there are still deficiencies. In this paper, the hesitant intuitionistic fuzzy set (HIFS), a concept that combines the intuitionistic fuzzy set (IFS) and the hesitant fuzzy set (HFS), is introduced into FMEA to convert linguistic evaluations. Some operators based on HIFS are proposed to process the converted data. Among them, a hesitant intuitionistic fuzzy comprehensive weighted Hamming distance (HIFCWHD) operator is proposed to compute the ordered comprehensive weight, effectively weakening the effect of extreme scores on results. The gray relational projection (GRP) method is adopted to determine the risk priority order of the failure modes. Finally, we give an illustrative case to demonstrate the effectiveness of the proposed FMEA method.  相似文献   

10.
朱玉杰  李谚 《工业工程》2016,19(3):122-129
针对失效模式与影响分析中的风险优先数(RPN)方法在质量改善项目排序问题上的局限性,提出一种新的排序方法。首先,借助模糊集理论和熵权法,确定决策指标的模糊指标值和主、客观权重;随后采用改进的理想解逼近法(TOPSIS)与秩和比法(RSR)获得优先级排序和分档;同时,提出并定义了相对应的关键术语:改善主题、难易程度、发生度和改善潜力,最后,结合企业实例验证了新排序方法的有效性和稳定性。  相似文献   

11.
As one of many scientific and efficient risk assessment approaches, failure mode and effect analysis (FMEA) has been widely applied across various fields. There are two core issues in the FMEA approach: identifying the latent failure modes of the systems, products, processes and services and the risk assessment and the prioritization of those failure modes. Then, corrective measures must be taken in a timely and accessible manner to prevent the occurrence of failure modes with higher risk levels. In practice, several FMEA members from different fields are usually involved in the FMEA implementation process; the risk assessment information given by them may vary greatly. Therefore, it is necessary to integrate a consensus-building process into FMEA. Meanwhile, the psychological behaviours of FMEA members have had a great impact on the final prioritization of failure modes. Prospect theory is an effective approach for describing individual psychological behaviours. Therefore, this paper presents a novel linguistic FMEA approach to address the consensus issue from the perspective of prospect theory. In the proposed linguistic FMEA approach, a consensus measurement approach based on prospect theory is constructed. Then, a novel feedback adjustment mechanism is designed in which FMEA members can adjust not only their assessment information but also their reference points to achieve an acceptable consensus degree. Eventually, a practical application is used to show the validity and applicability of the proposed linguistic FMEA approach.  相似文献   

12.
Failure modes and effects analysis (FMEA) is a safety and reliability technique that is widely used to evaluate, design, and process a system against diverse possible ways through which the potential failure has a tendency to occur. In conventional FMEA, the risk evaluation is determined by risk priority number (RPN) obtained by multiplying of three risk factors—severity, occurrence, and detection. However, because of many shortages in conventional FMEA, the RPN scores have been widely criticized along issues bothering on ambiguity and vagueness, scoring, appraising, evaluating, and selecting corrective actions. In this paper, we propose a new integrated fuzzy smart FMEA framework where the combination of fuzzy set theory, analytical hierarchy process (AHP), and data envelopment analysis (DEA) is used, respectively, to handle uncertainty and to increase the reliability of the risk assessment. These are achieved by employing a heterogeneous group of experts and determining the efficiency of FMEA mode with adequate priority and corrective actions using RPN, time, and cost as indicators. A numerical example (aircraft landing system) is provided to exemplify the feasibility and effectiveness of the proposed model. The outputs of the proposed model compared with the conventional risk assessment technique results show its effectiveness, reliability, and propensity for real applications.  相似文献   

13.
Failure mode and effects analysis is a widely applied risk assessment method in various engineering and management domains. However, the identification of failure modes is difficult and uncountable. Therefore, a function–motion–action (FMA) decomposition method is developed to identify failure modes from the perspective of motion and extraordinarily suitable for mechatronic products. In the typical risk assessment, the ranking orders of failure modes are determined by risk priority number (RPN), which has been criticized for several drawbacks and improved by some alternative RPNs, but some drawbacks still exist, such as duplicate values, narrow admissible value range, and missing failure modes’ and risk factors’ weights. This study formulates several alternative weighted RPNs to overcome the above drawbacks, and the final ranking orders of failure modes are garnered through the integrated RPN (IRPN). First, failure modes are identified via the proposed FMA decomposition method and evaluated with crisp values, whose weights are aggregated from the basic failure modes’ weights. Second, the weights of the basic failure modes, risk factors and different RPN methods are derived from analytic hierarchy process. Third, the conditional weights of risk factors are determined by incorporating risk factors’ weights and failure modes’ conditional weights deduced from Shannon entropy. Next, several alternative weighted RPNs and IRPN are formulated to rank failure modes’ risk levels. Finally, an illustrative example about computer numerical control machine center is presented to demonstrate the application and effectiveness of the proposed method.  相似文献   

14.
Failure mode and effect analysis (FMEA) is a useful technique to identify and quantify potential failures. FMEA determines a potential failure mode by evaluating risk factors. In recent years, there are many works improving FMEA by allowing multiple experts to use linguistic term sets to evaluate risk factors. However, it is important to design a framework that can consider both the weight of risk factors and the weight of the experts. In addition, managing conflicts among experts is also an urgent problem to be addressed. In this paper, we proposed an FMEA model based on multi-granularity linguistic terms and the Dempster–Shafer evidence theory. On the other hand, the weights for both experts and risk factors are taken into consideration. The weights are computed objectively and subjectively to ensure the reasonability. Further, we apply our method to an emergency department case, which shows the effectiveness of the method.  相似文献   

15.
In this paper, a novel integrated tool for failure mode and effects analysis (FMEA), opportunely named Risk Failure Deployment (RFD), which is able to evaluate the most critical failure modes and provide analyst with a practical and step-by-step guidance by selecting the most effective corrective actions for removal/mitigation process of root causes, is presented. Thanks to the modification of the framework of the Manufacturing cost deployment (MCD) and to its well-structured use of matrices, the novel RFD is able both to handle the dependencies and interactions between different and numerous failures and to evaluate the most critical ones on the basis of the risk priority number (RPN). Thereafter, the logical relationship between root causes and failure modes is assessed. Successively, the prioritization of corrective actions that are the most suitable for root causes is executed using not only the RPN but also other criteria, such as the economic aspect and the ease of implementation, that are unavoidable to execute a rational and effective selection of improvement activities. The effectiveness and usefulness in practice of the original tool for the prioritization of corrective actions to mitigate the risks due to failure modes collected during FMEA are presented in a case study.  相似文献   

16.
一种综合赋权的改进FMEA风险评估方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统故障模式和影响分析(failure mode and effects analysis, FMEA)方法中的未考虑风险因子权重以及风险因子权重难确定这一问题,提出一种综合赋权的改进FMEA风险评估方法。该方法首先通过FMEA团队明确评估对象和FMEA范围,然后列出所有潜在故障模式,对故障模式进行打分,得到所有的专家打分评估表,再通过语言变量转化为直觉模糊数。由层次分析法确定主观权重,由数据本身确定客观权重,使用直觉模糊混合加权算子(intuitionistic fuzzy hybrid weighted, IFHW)算子集结评价信息,得到所有的故障模式的得分函数,最后基于风险最大化选取每个故障模式的最大分数,进行排名,得到最终的故障模式风险顺序。通过对静电纺丝设备进行FMEA分析,并与其他方法进行比较,验证了所提方法的可行性。  相似文献   

17.
The failure mode and effect analysis (FMEA) is a widely applied technique for prioritizing equipment failures in the maintenance decision‐making domain. Recent improvements on the FMEA have largely focussed on addressing the shortcomings of the conventional FMEA of which the risk priority number is incorporated as a measure for prioritizing failure modes. In this regard, considerable research effort has been directed towards addressing uncertainties associated with the risk priority number metrics, that is occurrence, severity and detection. Despite these improvements, assigning these metrics remains largely subjective and mostly relies on expert elicitations, more so in instances where empirical data are sparse. Moreover, the FMEA results remain static and are seldom updated with the availability of new failure information. In this paper, a dynamic risk assessment methodology is proposed and based on the hierarchical Bayes theory. In the methodology, posterior distribution functions are derived for risk metrics associated with equipment failure of which the posterior function combines both prior functions elicited from experts and observed evidences based on empirical data. Thereafter, the posterior functions are incorporated as input to a Monte Carlo simulation model from which the expected cost of failure is generated and failure modes prioritized on this basis. A decision scheme for selecting appropriate maintenance strategy is proposed, and its applicability is demonstrated in the case study of thermal power plant equipment failures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
mode and effects analysis (FMEA) is an effective tool to assess the risk of a system or process under uncertain environment. However, how to handle the uncertainty in the subjective assessment is an open issue. In this paper, a novel method to deal with the uncertainty coming from subjective assessments of FMEA experts is proposed in the framework of Dempster–Shafer evidence theory. First, the uncertain degree of the assessment is measured by the ambiguity measure. Then, the uncertainty is transformed to the reliability of each FMEA expert and the relative importance of each risk factor. After that, the assessments from FMEA team will be fused with a discounting-based combination rule to address the potential conflict. Moreover, to avoid the situation that different risk priorities of failure modes may have the same ranking based on classical risk priority number method, the gray relational projection method (GRPM) is adopted for ranking risk priorities of failure modes. Finally, an application of the improved FMEA model in sheet steel production process verifies the reliability and validity of the proposed method.  相似文献   

19.
A maintenance planning framework is developed in this study to reduce and stabilize the maintenance costs of the manufacturing companies. The framework is based on fuzzy technique for order preference by similarity to ideal solution(TOPSIS) and failure mode and effects analysis (FMEA) techniques and supports maintenance planning decisions in a dynamic way. The proposed framework is general and can easily be adapted to a host of manufacturing environments in a variety of sectors. To determine the maintenance priorities of the machines, fuzzy TOPSIS technique is employed. In this regard, ‘risk priority number’ obtained by FMEA and ‘current technology’, ‘substitutability’, ‘capacity utilization’, and ‘contribution to profit’ are used as the criteria. Performance of the resulting maintenance plan is monitored, and maintenance priorities of the machines are updated by the framework. To confirm the viability of the proposed framework, a real‐world implementation in an international food company is presented. The results of the application reveal that the proposed maintenance planning framework can effectively and efficiently be used in practice. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Rotor blades are the major components of an aircraft turbine. Their reliability seriously affects the overall aircraft turbine security. Failure mode and effects analysis (FMEA), especially, the risk priority order of failure modes, is essential in the design process. The risk priority number (RPN) has been extensively used to determine the risk priority order of failure modes. When multiple experts give different risk evaluations to one failure mode, which may be imprecise and uncertain, the traditional RPN is not a sufficient tool for risk evaluation. In this paper, the modified Dempster–Shafer (D–S) is adopted to aggregate the different evaluation information by considering multiple experts’ evaluation opinions, failure modes and three risk factors respectively. A simplified discernment frame is proposed according to the practical application. Moreover, the mean value of the new RPN is used to determine the risk priority order of multiple failure modes. Finally, this method is used to deal with the risk priority evaluation of the failure modes of rotor blades of an aircraft turbine under multiple sources of different and uncertain evaluation information. The consequence of this method is rational and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号