首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This brief paper addresses the finite‐time stability problem of switched positive linear systems. First, the concept of finite‐time stability is extended to positive linear systems and switched positive linear systems. Then, by using the state transition matrix of the system and copositive Lyapunov function, we present a necessary and sufficient condition and a sufficient condition for finite‐time stability of positive linear systems. Furthermore, two sufficient conditions for finite‐time stability of switched positive linear systems are given by using the common copositive Lyapunov function and multiple copositive Lyapunov functions, a class of switching signals with average dwell time is designed to stabilize the system, and a computational method for vector functions used to construct the Lyapunov function of systems is proposed. Finally, a concrete application is provided to demonstrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers an asynchronous problem for sampled‐data control of switched linear systems, which are described as switched linear systems with an input delay. To handle the problem, this paper proposes a stability criterion for the systems by constructing a novel Lyapunov‐Krasovskii functional dependent not on system modes but on controller modes. The functional continuously remains when the system modes are switched but discontinuously changes whenever the controller mode moves to the current system mode at the sampling instants. Furthermore, the functional is allowed to increase or decrease up to a certain level when the functional discontinuously changes and to increase up to a certain level when the system modes and the controller modes are asynchronous. Based on the functional, this paper derives an average dwell time associated with the interval of samplings and the incremental level of the functional for guaranteeing the stability of the systems. A numerical example illustrates the validation of the proposed method.  相似文献   

3.
A switched nonlinear system subject to disturbances is considered in this paper. The switching signal admits an average dwell time and a state feedback control depending on the system operating modes, detected with a maximum time delay, is applied to the system. In this framework, the input‐to‐state stability problem of the closed‐loop system is addressed. Based on some established existence conditions of mode‐dependent Lyapunov‐like functions, the values of the maximum time delay and the average dwell time that allow to achieve the input‐to‐state stability of the closed‐loop system are determined. In order to obtain more tractable results, the existence conditions of the mode‐dependent Lyapunov‐like functions are given in terms of sum‐of‐squares programming in the case of polynomial nonlinearities. In the linear case, they are expressed in terms of linear matrix inequalities and a procedure for the synthesis of the mode‐dependent controller is provided in this situation. The established theoretical results are illustrated through a control problem of a building ventilation system and a switched control problem of a vehicle suspension system.  相似文献   

4.
This paper investigates the problem of exponential stability and l1‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l1‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the problem of exponential H filter problem for a class of discrete‐time polytopic uncertain switched linear systems with average dwell time switching is investigated. The exponential stability result of the general discrete‐time switched systems using a discontinuous piecewise Lyapunov function approach is first explored. Then, a new µ‐dependent approach is proposed, which means the analysis or synthesis of the underlying systems is dependent on the increase degree µ of the piecewise Lyapunov function at the switching instants. A mode‐dependent full‐order filter is designed such that the developed filter error system is robustly exponentially stable and achieves an exponential H performance. Sufficient existence conditions for the desired filter are derived and formulated in terms of a set of linear matrix inequalities, and consequently the minimal average dwell time and the corresponding filter are obtained from such conditions for a given system decay degree. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the stability problem of switched positive linear systems with stable and unstable subsystems. Based on a multiple linear copositive Lyapunov function, and by using the average dwell time approach, some sufficient stability criteria of global uniform exponential stability are established in both the continuous-time and the discrete-time cases, respectively. Finally, some numerical examples are given to show the effectiveness of the proposed results.  相似文献   

7.
In this paper, the filtering problem for a class of switched positive systems with dwell time is investigated. A novel weighted‐average technique is proposed for filter design such that the final estimate of the unmeasurable outputs of the considered system is more accurate than that of traditional approaches. The main contributions of this paper are summarized as follows: By exploiting the positivity and characteristics of switched positive systems with dwell time, a candidate linear copositive Lyapunov function, which is both quasi‐time‐dependent and mode‐dependent, is presented to establish the closed‐loop stability of the considered systems. Upon the established closed‐loop stability, less conservative bounded positive filters (both upper‐bound and lower‐bound filter) with ? 1 disturbance attenuation performance are designed for the considered system. By introducing a proper weight, a weighted‐average approach, which is more general than the bounded filter design method, is proposed for filter design. The worst ? 1 disturbance attenuation performance of the novel developed filter is evaluated. Both the bounded filters and the weighted‐average filter are designed by solving standard linear programming problems. A numerical example illustrates the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the problem of the fault detection filter design for discrete‐time switched linear systems with average dwell‐time. The designed fault detection filters are also switched systems, which are assumed to be asynchronously switched with the original switched systems. Improved results on the weighted l2 performance and the H ? performance are first given, and the multiple Lyaounov‐like functions during matched period and unmatched period for the running time of one subsystem are used. By the aid of multiple Lyapunov‐like functions combined with Projection Lemma, the FD filters are designed such that the augmented systems under asynchronous switching are exponentially stable, and the residual signal generated by the filters achieves the weighted l2‐gain for disturbances and guarantees the H ? performance for faults. Sufficient conditions are formulated by linear matrix inequalities, and the filter gains are characterized in terms of the solution of a convex optimization problem. Finally, examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the design of a high-order repetitive control (RC) law for a class of discrete-time linear switched systems with repetition-varying reference trajectories. First, a high-order RC law, which embeds the characteristic of known variation of the reference trajectories, is proposed to the system, and a two-dimensional (2D) model is presented to describe the control and learning actions of the repetitive control system by using the lifting technique. By choosing appropriate multiple Lyapunov–Krasovskii functions, sufficient conditions for asymptotic stability of the 2D system are derived in the form of a set of linear matrix inequalities. Finally, an example is given to illustrate the effectiveness of the proposed results.  相似文献   

10.
In this paper, several equivalent stability conditions for switched linear systems with dwell time are presented. Both continuous‐time and discrete‐time cases are considered. For the continuous‐time case, the conditions that are convex in system matrices are presented in terms of infinite‐dimensional linear matrix inequalities (LMIs), which are not numerically testable. Then, by adopting the sum of square (SOS) and piecewise linear approach, computable conditions are formulated in terms of SOS program and LMIs. Compared to the literature, less conservative results can be obtained through solving these conditions for the same polynomial degree or discretized order. For the discrete‐time case, the stability conditions, which are convex in system matrices, are numerically testable. The convexity comes at the price of increment of computational complexity. Furthermore, by adopting the convexification approach, sufficient stability conditions of switched linear systems with polytopic uncertainties are derived, both for continuous‐time and discrete‐time cases. At last, several examples are given to demonstrate the correctness and advantages of our results.  相似文献   

11.
In this article, a unified mode‐dependent average dwell time (MDADT) stability result is investigated, which could be applied to switched systems with an arbitrary combination of stable and unstable subsystems. Combined with MDADT analysis method, we classified subsystems into two categories: switching stable subsystems and switching unstable subsystems. State divergence caused by switching unstable subsystems could be compensated by activating switching stable subsystems for a sufficiently long time. Based on the above considerations, a new globally exponentially stability condition was proposed for discrete‐time switched linear systems. Under the premise of not resolving the LMIs, the MDADT boundary of the new stability condition is allowed to be readjusted according to the actual switching signal. Furthermore, the new stability result is a generalization of the previous one, which is more suitable for the case of more unstable subsystems. Some simulation results are given to show the advantages of the theoretic results obtained.  相似文献   

12.
In this paper, we aim to investigate the stability of 2D switched positive nonlinear systems with time‐varying delays in the Roesser model, which includes 2D switched positive linear systems as a special case. By using the average dwell time approach, we give a sufficient condition for the exponential stability of 2D switched positive nonlinear systems. The difficulty caused by the delays is overcome by introducing a model transform and the method used in this paper is different from conventional Lyapunov‐Krasovskii functional method. An explicit exponential bound on the decay rate is presented. We also extend the result to the general 2D switched linear systems, not necessarily positive. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained result.  相似文献   

13.
Inspired by the idea of multiple Lyapunov functions and the average dwell time, we address the stability analysis of nonautonomous continuous‐time switched systems. First, we investigate nonautonomous continuous‐time switched nonlinear systems and successively propose sufficient conditions for their (uniform) stability, global (uniform) asymptotic stability, and global (uniform) exponential stability, in which an indefinite scalar function is utilized to release the nonincreasing requirements of the classical multiple Lyapunov functions. Afterwards, by using multiple Lyapunov functions of quadratic form, we obtain the corresponding sufficient conditions for (uniform) stability, global (uniform) asymptotic stability, and global exponential stability of nonautonomous switched linear systems. Finally, we consider the computation issue of our current results for a special class of nonautonomous switched systems (ie, rational nonautonomous switched systems), associated with two illustrative examples.  相似文献   

14.
In this paper, we study the finite‐time boundedness, stabilization, and L2‐gain for switched positive linear systems (SPLS) with multiple time delays. Using multiple linear copositive Lyapunov functions, sufficient conditions in terms of linear matrix inequalities are obtained for the problems of finite‐time boundedness and stabilization and the design of state feedback controllers for SPLS. Under asynchronous switching, L2‐gain analysis is developed for SPLS under the constraint of average dwell time. Numerical examples are given to illustrate our theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
线性切换容错控制系统稳定性的新判据*   总被引:1,自引:0,他引:1  
研究了线性切换容错控制系统的稳定性问题。利用分段李雅普诺夫函数方法,结合梅茨勒矩阵的性质和矩阵不等式的分析技巧,得到了基于李雅普诺夫—梅兹勒线性矩阵不等式判定系统稳定的新结果。设计依赖于状态的切换规则便于计算、易于检验。最后利用MATLAB工具箱得到的仿真实例验证了本结果的可行性。  相似文献   

16.
The problem of robust stability for switched linear systems with all the subsystems being unstable is investigated. Unlike the most existing results in which each switching mode in the system is asymptotically stable, the subsystems may be unstable in this paper. A necessary condition of stability for switched linear systems is first obtained with certain hypothesis. Then, under two assumptions, sufficient conditions of exponential stability for both deterministic and uncertain switched linear systems are presented by using the invariant subspace theory and average dwell time method. Moreover, we further develop multiple Lyapunov functions and propose a method for constructing multiple Lyapunov functions for the considered switched linear systems with certain switching law. Several examples are included to show the effectiveness of the theoretical findings.  相似文献   

17.
This paper is concerned with the positive stabilization for a class of switched systems under asynchronous switching signals. Because it inevitably takes some time to identify the active subsystem in the real systems and activate the corresponding controller, the switching of controllers lags behind that of subsystems, which arises the problem of the asynchronous switching. By analyzing the solution of dynamic systems, the mode‐dependent controllers are designed to guarantee the positivity and exponential stability for the resultant closed‐loop switched linear systems under asynchronous switching signals in continuous‐time and discrete‐time cases, respectively. Sufficient conditions for the existence of admissible state‐feedback controllers are developed, and the corresponding switching signals are designed. Furthermore, a synchronous switching phenomenon is discussed as a special case. Finally, numerical examples are given to illustrate the effectiveness of the results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The issue of exponential stability analysis of continuous‐time switched singular systems consisting of a family of stable and unstable subsystems with time‐varying delay is investigated in this paper. It is very difficult to analyze the stability of such systems because of the existence of time‐delay and unstable subsystems. In this regard, on the basis of the free‐weighting matrix approach, by constructing the new Lyapunov‐like Krasovskii functional, and using the average dwell‐time approach, delay‐dependent sufficient conditions are derived and formulated in terms of LMIs to check the exponential stability of such systems. This paper also highlights the relationship between the average dwell‐time of the switched singular time‐delay system, its stability, exponential convergence rate of differential states, and algebraic states. Finally, a numerical example is given to confirm the analytical results and illustrate the effectiveness of the proposed strategy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses the problem of stability for a class of switched positive linear time‐delay systems. As first attempt, the Lyapunov–Krasovskii functional is extended to the multiple co‐positive type Lyapunov–Krasovskii functional for the stability analysis of the switched positive linear systems with constant time delay. A sufficient stability criterion is proposed for the underlying system under average dwell time switching. Subsequently, the stability result for system under arbitrary switching is presented by reducing multiple co‐positive type Lyapunov–Krasovskii functional to the common co‐positive type Lyapunov–Krasovskii functional. A numerical example is given to show the potential of the proposed techniques. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the problem of exponential H filtering for a class of continuous‐time switched linear system with interval time‐varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay‐derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H noise attenuation level. Based on the free‐weighting matrix approach and the average dwell technology, delay‐dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号