首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the feasibility of whey protein isolate (WPI) coating as an alternative oxygen barrier for food packaging, heat‐denatured aqueous solutions of WPI with various levels of glycerol as a plasticizer were applied on corona‐discharge‐treated low‐density polyethylene (LDPE) films. The resulting WPI‐coated LDPE films showed good appearance, flexibility and adhesion between the coating and the base film, when an appropriate amount of plasticizer was added to the coating formulations. WPI‐coated LDPE films showed significant decrease in oxygen permeability (OP) at low to intermediate relative humidity, with an Arrhenius behaviour and an activation energy of 50.26 kJ/mol. The OP of the coated films increased significantly with increasing relative humidity, showing an exponential function. Although the coated films showed a tendency to have less oxygen barrier and more glossy surfaces with increasing plasticizer content, differences in the OP and gloss values were not significant. Haze index and colour of the coated films were also little influenced by WPI coating and plasticizer content. The results suggest that whey protein isolate coating could work successfully as an oxygen barrier and have potential for replacing synthetic plastic oxygen‐barrier layers in many laminated food packaging structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The high oxygen barrier properties of whey protein based films and coatings means these materials are of great interest to the food and packaging industry. However, these materials have poor mechanical properties such as the tensile strength, Young's modulus and elongation at break. Up until now, the influence of ultraviolet (UV) radiation on whey protein films has not been reported in the literature. This study thus investigates the influence of UV‐radiation on the properties of whey protein based films. UV‐irradiated films showed increased tensile strength and a yellowing that was dependent on the radiation time. After irradiation, the films showed no significant change in the barrier properties, Young's modulus or elongation at break. In addition, a protein solubility study was undertaken to characterize and quantify changes in structure‐property relationships. The significant decrease in protein solubility in buffer systems which break disulfide and non‐covalent bonds indicates that additional molecular interactions arise with increasing radiation dose. This study provides new data for researchers and material developers to tailor the characteristics of whey protein based films according to their intended application and processing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Whey protein is an excellent barrier material, potentially providing the low oxygen permeability and water vapour transmission rate required for packaging materials for sensitive foods. A topical issue is how to reduce the permeability of the whey protein‐based layers. One possible strategy is to apply crosslinking agents. In the present study, the enzyme transglutaminase (TG) was used for this purpose, and the following properties have been measured: oxygen permeability, water vapour transmission rate, effective water vapour diffusion, sorption and permeation coefficients, swellability, light transmission and surface energy. The use of TG was found to reduce the oxygen permeability, reduce the water vapour transmission rate and reduce the effective water vapour diffusion coefficient of the whey protein layers. This study also showed that it was possible to use sorption experiments to approximate the water vapour transmission rates. This work is novel because it deals with the packaging‐related properties of whey films crosslinked with TG. Previous studies have focused on the influence of TG on protein formulations or on the measurement of film properties, which is of little relevance for packaging applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Potato peel is a by‐product of potato‐based food production and seen as a zero‐ or negative‐value waste of which millions of tons are produced every year. Previous studies showed that potato peel is a potential material for film development when plasticized with 10% to 50% glycerol (w/w potato peel). To further investigate potato peel as a film‐forming material, potato peel‐based films containing the plasticizer sorbitol were prepared and investigated on their physicochemical properties in addition to films containing glycerol. Due to sufficient producibility and handling of casted films in preliminary trials, potato peel‐based films containing 50%, 60%, or 70% glycerol (w/w potato peel) and films containing 90%, 100%, or 110% sorbitol (w/w potato peel) were prepared in this study. Generally, with increasing plasticizer concentration, water vapor and oxygen permeability of the films increased. Films containing glycerol showed higher water vapor and oxygen permeabilities than films containing sorbitol. Young's modulus, tensile strength, and elongation at break decreased with increasing sorbitol concentration, whereas no significant effect of plasticizer content on elongation at break was shown in films containing glycerol. Due to crystallization of films containing sorbitol as a plasticizer, potato peel‐based films containing 50% glycerol (w/w) were identified as the most promising films, characterized by a water vapor transmission rate of 268 g 100 μm m?2 d?1 and an oxygen permeability of 4 cm3 100 μm m?2 d?1 bar?1. Therefore, potato peel‐based cast films in this study showed comparable tensile properties with those of potato starch‐based films, comparable water vapor barrier with those of whey protein‐based films, and comparable oxygen barrier with those of polyamide films.  相似文献   

5.
Biodegradable protein‐based films prepared from different protein sources [commercial bovine gelatine (CG), giant catfish skin gelatine (GG), soy protein isolates (SPI), fish myofibrillar protein (FMP) and whey protein concentrate (WPC)] were all investigated for their mechanical, physical, chemical, thermal and barrier properties. The properties of the resulting films were then compared with those of commercial wrap films [polyvinyl chloride (PVC)]. The film forming solution containing 7% (w/v) protein and 50% (w/w) glycerol was used to produce the films through a casting method. Of the protein‐based films, the GG film had the highest tensile strength and elongation, while the WPC film exhibited the lowest film solubility, water vapour permeability, light transmission in UV‐Vis range (200–800 nm) and film transparency. However, the colour of the FMP film and the thickness were closer to that of the PVC film, particularly the L* and b* values. The appearances of the protein‐based films were similar to the PVC film, and they were uniformly transparent. Therefore, biodegradable films produced from different types of protein sources exhibited differences in their properties. These results are consistent with data from FTIR and protein pattern analyses. Based on these findings, different sources of protein‐based films can be used as an alternative for food packaging applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A three‐layer laminate film was developed with the following structure: polyethylene terephthalate (PET)/fish gelatin (FG)–nanoclay composite/low‐density polyethylene (LDPE). The FG–nanoclay composite material functioned as the oxygen barrier layer and demonstrated comparable oxygen barrier properties when compared with a similar laminate utilizing ethylene vinyl alcohol as the barrier layer at a relative humidity (RH) of up to 50%. The introduction of nanometer‐sized filler clay into the FG matrix lowered the oxygen permeability (OP) because of the tortuosity effect of the clay particles. In addition, the FG–nanoclay composite film exhibited bond strengths similar to both LDPE and PET. The hydrophilic nature of FG significantly increases OP under high (>50%) RH conditions. However, this new FG laminate film could be a possible alternative for packaging designers desiring a more sustainable packaging material for low‐RH (<50%) applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The effect of high‐pressure processing (HPP) on the total migration into distilled water and olive oil and on the barrier properties of four complex packaging materials were evaluated. The films were polyethylene/ethylene‐vinyl‐alcohol/polyethylene (PE/EVOH/PE), metallized polyester/polyethylene, polyester/polyethylene (PET/PE), and polypropylene‐SiOx (PPSiOx). Pouches made from these films were filled with food simulants, sealed and then processed at a pressure of 400 MPa for 30 min, at 20 or 60°C. Pouches kept at atmospheric pressure were used as controls. Prior to and after treatment, all films were evaluated for their barrier properties (oxygen transmission rate and water vapour transmission rate) and ‘Total’ migration into the two food simulants. In the case of water as the food stimulant, a low ‘Total’ migration was observed and even a lower one after the HPP treatment. In the case of oil as the food simulant, a higher ‘Total’ migration was found compared to the control as a result of damage to the structures during the HPP treatment. The gas permeability of the films increased after the HPP, compared to the control, due to damages in the structure caused during the treatment. The PET/PE film presented minimum changes in properties after HPP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
谷氨酰胺转氨酶改性蛋白类生物包装膜研究进展   总被引:3,自引:2,他引:1  
谷氨酰胺转氨酶(TG)来源广泛,微生物、动物、植物体内都存在TG,其广泛应用于食品、纺织、医药、皮革等领域。综述了谷氨酰胺转氨酶对大豆分离蛋白膜、谷朊粉膜、花生分离蛋白膜、玉米蛋白膜等植物蛋白类生物包装膜和明胶膜、乳清蛋白膜等动物蛋白类生物包装膜性能的影响。蛋白类生物包装膜和其他材料的复合研究,将是未来可降解性膜的研究趋势之一。  相似文献   

9.
Recycled cardboard has been identified as a major source of mineral oil hydrocarbon (MOH) contamination of foods. Identifying and using appropriate functional barriers is a mechanism through which this problem can be addressed. A number of cellulose‐based and biaxially oriented polypropylene (BOPP) films were evaluated as potential functional MOH barriers. The films were tested using a donor material, a paper containing MOH placed on one side of the film barrier and a paper which acted as the receptor on the other. Testing was performed at accelerated conditions of 60°C, the receptor analysed periodically for MOH. The results demonstrated that the cellulose‐based film types provided an MOH barrier of >3.5 years. This contrasted with the BOPP selected films, for which only the proprietary acrylic‐coated BOPP film provided an effective barrier to MOH migration. Further investigation of the MOH barrier properties of the proprietary acrylic‐coated BOPP film was undertaken. Various coating strategies were employed including increasing the coating application weight, increasing the number of coating lay downs and coating one or both surfaces of the film. It was found that an MOH barrier of 1.5 years when tested at 40°C could be achieved for the proprietary acrylic‐coated BOPP film; however, barrier effectiveness was dependent on the coating integrity of the film. Further work with a vertical form filler packaging machine and the use of a staining technique with transmission microscopy proved effective at highlighting and assessing the coating integrity of packets during a typical packaging operation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This study investigated the effects of high pressure processing (HPP) on the barrier properties of eight multilayer films. Pouches made from these films were filled with distilled water, sealed and then pressure processed at 600 and 800 MPa for 5, 10 and 20 min at 45°C. Controls were similarly prepared but exposed to atmospheric pressure. After processing, all pouches were dried and their oxygen, carbon dioxide and water vapour permeance determined. Films used in this study were PET/SiOx /LDPE, PET/Al2O3/LDPE, PET/PVDC/nylon/HDPE/PE, PE/nylon/EVOH/PE, PE/nylon/PE, metallized‐PET/EVA/LLDPE, PP/nylon/PP and PET/PVDC/EVA. Results showed that metallized PET was most severely affected by HPP, as its permeance values for oxygen, carbon dioxide and water increased as much as 150%. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Biopolymer packaging materials show increasing perspective in food packaging. Main limitation remains their high water sensitivity and poor water vapour barrier properties, compared to non polar materials of synthetic origin like polyethylene. In this paper, biopolymer layer obtained from by‐product of oil industry (pumpkin seed oil cake) was laminated on polyethylene in order to obtain new packaging material that would preferably combine water barrier properties of polyethylene and oxygen barrier properties of biopolymer composite material and perform satisfactory mechanical properties. Obtained two‐layer material showed good barrier properties for water vapour (7–8 g/m2 24h), as well as oxygen (12–45 cm3/m2 24h) and light. In addition, mechanical and water sensitivity tests were performed and results showed that new material inherited biopolymer film water sensitivity and mechanical properties with slight improvement. Measured tensile strength and elongation at break was 2–4 MPa and 150–250% in transversal direction and 6–8 MPa and 100–150% in longitudinal direction. Packing in modified atmosphere assay showed that new material can be used for this purpose with good control of oxygen concentration, while packing under increased concentration of CO2 could be performed for shorter storage period. New two layer material shows promising properties for sensitive food packing under modified atmosphere conditions with reduced use of synthetic, oil‐based materials.  相似文献   

12.
目的 将硅烷化木质素(SAL)与聚己二酸/对苯二甲酸丁二酯(PBAT)共混制备包装性能更为优良的SAL/PBAT复合包装膜,使其在包装领域应用更广。方法 通过对木质素进行硅烷化改性,以咪唑作为中间体,将叔丁基二甲基氯硅烷(TBDMSCl)接枝到木质素的羟基上制备SAL,并将SAL与PBAT进行熔融共混吹塑成膜,探讨其对包装膜的力学和阻隔等性能的影响。结果 与纯PBAT膜相比,SAL/PBAT复合包装膜拉伸强度提高了31.0%,断裂伸长率降低了37.4%,弹性模量提高了529.7%,氧气透过率降低了39.4%,水蒸气透过率降低了42.4%。结论 改性木质素与PBAT复合能够产生协同效应,可以有效改善SAL/PBAT复合包装膜的力学和阻隔性能。  相似文献   

13.
以交联羧甲基玉米淀粉(CCMS)为原料,辅以增强剂、增塑剂、脱泡剂及脱膜剂等,通过流延方法制备了交联羧甲基玉米淀粉/乳清蛋白可食性复合包装膜。实验考察了乳清蛋白粉的添加量对交联羧甲基玉米淀粉可食性膜阻隔性能的影响。结果表明:乳清蛋白添加量为15%(质量分数)时,可食性复合膜的阻隔性最好,其透氧系数为0.312×10-15cm3.cm/(m2.s.Pa),水蒸气透过系数为2.89 g.mm/(m2.d.kPa),吸水稳定性好。  相似文献   

14.
The present research dealt with evaluating barrier, friction and optical properties of three different plastic films after deposition of a gelatin‐based bio‐coating. The composite films showed improved barrier properties against oxygen and UV radiation. The oxygen transmission rate decreased in the order of 73% for oriented polypropylene (OPP), 56% for low‐density polyethylene (LDPE) and 40% for polyethylene terephthalate (PET). The increased UV barrier characteristics ranged from 20% for OPP to 12% for both LDPE and PET. Static and kinetic coefficients of friction significantly decreased both in the film‐to‐film and in the film‐to‐metal tests, leading to a desirable value for many applications. However, bio‐coated films showed lower optical performances in terms of transparency and haze. Transparency decreased mainly for LDPE (36%), whereas the haze index increased especially for OPP (85%). Non‐significant differences were observed as far as the water vapour permeability was concerned, except for a slight reduction for PET (from 15.78 to 13.53 cm3/m2/day at 23°C and 90% of relative humidity), suggesting that non‐meaningful effects arose from the addition of a hydrophobic component in the original formulation. Finally, the solubility of the coating in water was around 25% for all the three plastic substrates. The obtained data suggest that the lipid protein coating tested in this study, in spite of its great potential for enhancing some characteristics of plastic packaging films, still exhibits negative aspects which necessitate further improvement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, the effect of a vegetable oil on the oxygen barrier properties of different polymer packaging materials [i.e. amorphous polyethylene terephtalate (APET), polypropylene (PP) and high density polyethylene (HDPE)] was investigated. The influence of both relative humidity and the combination of relative humidity and sorbed oil on the oxygen transmission rate (OTR) was studied. Regardless of the relative humidity, the APET film remained an excellent oxygen barrier even after storage in rapeseed oil for 40 days. An increased OTR was observed in both the PP and HDPE films stored for 40 days in rapeseed oil. The OTR of the HDPE films was altered to a much greater extent than the OTR of the PP film. The OTR of the HDPE film was also significantly increased for films stored for 20 days in rapeseed oil. The increase in OTR of an HDPE film stored for 40 days in rapeseed oil was between 36 and 44%, depending on the relative humidity, compared to the OTR through the virginal polymer. The amount of oil sorbed by the polymer films used decreased in the following order: HDPE ? APET > PP.  相似文献   

16.
This study investigated the use of ethylene vinyl acetate (EVA) matrix in controlled release packaging. Mangiferin, having high antioxidant activity, was incorporated into the EVA matrix with different vinyl acetate (VA) contents. Mangiferin release rate increased with increasing VA content (or decreasing crystallinity). Linear relationship between mangiferin release rate and VA content was observed in the range of 18–40% VA. The diffusion coefficients of mangiferin released from the EVA matrices containing 12%, 18%, 25% and 40% VA were 0.482, 0.512, 2.81 and 2.88 (×10?14 m2/s), respectively. The enhancement factors of about 22‐fold and sevenfold were observed in the 12% and 18% VA matrices, respectively, when using triethyl citrate as a plasticizer. EVA film containing 40% VA had the highest antioxidant activity (81.90% radical scavenging capacity, (RSC)) because the highest amount of mangiferin was released in the food simulant (84.66 µg/ml). Addition of mangiferin in the polymer matrices had no significant (p > 0.05) effect on thermal and barrier properties of the films but decreased tensile strength and Young's modulus. The results of this study demonstrated that EVA matrices with varying degree of VA could potentially be used to control mangiferin release rate for antioxidant packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Nanocomposite films based on low density polyethylene (LDPE), containing of 2, 3, and 4 wt.% organoclay (OC) and ethylene vinyl acetate (EVA) copolymer as a new compatibilizer were prepared and characterized using rheological tests, X-ray diffraction, differential scanning calorimetry, oxygen permeation measurements, and tensile tests. There was no exfoliation or intercalation of the clay layers in the absence of EVA, while an obvious increase in d-spacing was observed when the samples were prepared with EVA present. This issue was reflected in the properties of nanocomposites. The oxygen barrier properties of the LDPE/EVA/OC film were significantly better than those of the LDPE/OC film. The average aspect ratio of clay platelets in nanocomposites was determined from permeability measurements and using Lape–Cussler model. In addition to barrier properties, the LDPE/EVA/OC film also had better elastic modulus than their counterparts without EVA. The modulus reinforcement of nanocomposites was studied using Halpin–Tsai equations, which are universally used for composites reinforced by flake-like or rod-like fillers.  相似文献   

18.
The blends of linear low‐density polyethylene and chitosan were prepared by using a two‐step melt‐compounding process and then were made into blown films for packaging. LLDPE‐g‐MAH was used as compatilizer to enhance the dispersing effect of chitosan in the matrix. Fourier transform infrared spectra and scanning electron microscope images of the blown films confirmed that there were new amide bonds formed between chitosan and LLDPE‐g‐MAH. The mechanical and barrier properties of the LLDPE/chitosan blown films were investigated. The result indicated that the breaking strength and elongation decreased as the chitosan content increased. In addition, the water vapour permeability of the blend films could be improved up to 200% with the increment of chitosan content, and the oxygen permeability decreased about 20% compared with the films without chitosan. It was found that LLDPE‐g‐MAH had obvious effects on the mechanical properties and oxygen permeability apart from the water vapour resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this work was to investigate the effect of film formulations in an effort to obtain a fresh produce packaging film with increased temperature sensitivity for gas permeability. Series of shape‐memory polyurethane (SMPU) were synthesized using poly(ethylene glycol) (PEG), 1,6‐hexamethylene diisocyanate, 1,4‐butanediol and castor oil (CO) and casted into films. The changes in thermal, viscoelastic, shape‐memory properties and oxygen permeability of the films were studied. The polyurethane films with 1500 g mol?1 PEG showed a phase transition temperature (switching temperature) between 20 and 27°C. The SMPU consisting of 50/50 CO/PEG had a log E′ value of 8.32 Pa and showed good elasticity as low density polyethylene. SMPU prepared from 1500 g mol?1 PEG with 50/50 CO/PEG and 40/60 butanediol/(PEG + CO) ratios showed excellent shape‐memory properties with shape recovery ratio >85% and shape fixity ratio >90%. This film had higher oxygen permeability and showed up to 67% increase in Q10 value for oxygen permeability compared with commercial packaging films like low density polyethylene. This film can be used to develop smart packaging with increased thermally responsive gas permeability to similar levels observed in respiration rates of fresh produce. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this work a series of co‐polyamides were prepared by random polymerization of ?‐caprolactam in presence of four different co‐monomers at a percentage of 5% w/w, with the aim of verifying their suitability as film‐forming materials. The effects of structural changes induced in the ?‐caprolactam homopolymer by co‐monomers were evaluated in both molten and solid states. Rheological tests in shear and elongational flow were performed to evaluate the processability of co‐polyamides. Cast films were obtained and their thermal, mechanical and transport properties were evaluated to establish the performances of the co‐polyamides in view of packaging applications. The results indicate that co‐polyamide films having a partially aromatic structure display the best mechanical performances and show a significant improvement in barrier properties to gases compared to the homopolymer. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号