首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boris J  Jensen B  Salvig JD  Secher NJ  Olsen SF 《Lipids》2004,39(12):1191-1196
The aim of this research was to investigate the effect of fish oil supplementation, in the third trimester of pregnancy and early lactation period of healthy pregnant Danish women. Forty-four pregnant women were randomly allocated to fish oil supplementation (1.3 g EPA and 0.9 g DHA per day) from week 30 of gestation (FO-group) or to a control regimen (olive oil or no oil; controls). The FO-group was randomly subdivided into women stopping fish oil supplementation at delivery [FO(pregn)], and women continuing supplementation for an, additional 30 d [FO(pregn/lact)]. Thirty-six women agreed to collect milk samples at days 4, 16, and 30 postpartum. The FA composition of the milk samples was determined by GLC. At days 4, 16, and 30 in lactation, FO(pregn/lact) women (n=12) had, respectively 2.3 (P=0.001), 4.1 (P=0.001), and 3.3 (P=0.001) times higher mean contents of LCPUFA(n−3) in their breast milk compared with controls (n=13), and 1.7 (P=0.005), 2.8 (P=0.001), and 2.8 (P=0.001), times higher LCPUFA(n−3) contents, respectively, at these days compared with FO(pregn) women (n=11). The latter group did not differ significantly from controls with regard to LCPUFA(n−3) content in the breast milk. Similar results were obtained when analyzing separately for effects on the milk content of DHA. Dietary supplementation with 2.7 g LCPUFA(n−3) per day from week 30 of gestation and onward more than tripled the LCPUFA(n−3) content in early breast milk; supplementation limited to pregnancy only was much less effective.  相似文献   

2.
Ando K  Nagata K  Yoshida R  Kikugawa K  Suzuki M 《Lipids》2000,35(4):401-407
The present study was undertaken in order to reexamine the effect of n−3 polyunsaturated fatty acid (PUFA)-rich diet supplementation on lipid peroxidation and vitamin E status of rat organs. Male Wistar rats were fed a diet containing safflower or fish oil at 50 g/kg diet and an equal amount of vitamin E at 59 mg/kg diet (1.18 g/kg oil; and 1.5 g/kg PUFA in safflower oil diet, and 4.3 g/kg PUFA in fish oil diet) for 6 wk. Fatty acid composition of total lipids of brain, liver, heart, and lung of rats fed fish oil was rich in n−3 PUFA, whereas that of each organ of rats fed safflower oil was rich in n−6 PUFA. The vitamin E levels in liver, stomach, and testis of the fish oil diet group were slightly lower than those of the safflower oil diet group, but the levels in brain, heart, lung, kidney, and spleen were not different between the two diet groups. The levels of phospholipid hydroperoxides were determined by the high-performance liquid chromatography-chemiluminescence method and the levels of thiobarbituric acid-reactive substances (TBARS) were determined at pH 3.5 in the presence of butylated hydroxytoluene with or without EDTA. Levels of phospholipid hydroperoxides and TBARS in the brain, liver, heart, lung, kidney, spleen, stomach and testis of the fish oil diet group were similar to those of the safflower oil diet group. The results indicate that high fish oil intake does not induce increased levels of phospholipid hydroperoxides and TBARS in rat organs.  相似文献   

3.
Garg ML  Leitch J  Blake RJ  Garg R 《Lipids》2006,41(12):1127-1132
Recent studies have demonstrated that long-chain n−3 PUFA (LCn-3PUFA) are beneficial in reducing the risk of cardiac arrhythmias. This study was conducted to determine the extent of incorporation of LCn-3PUFA into human atrium following supplementation with a fish oil concentrate high in LCn-3PUFA. Volunteers preparing for coronary bypass surgery were randomized either to the treatment group (n=8), receiving 6 g/d of fish oil concentrate (4.4 g of LCn-3PUFA), or the placebo group (n=9), receiving 6 g/d of olive oil for a minimum period of 6 wk. Blood samples were collected prior to commencement of treatment, and preoperatively before bypass surgery. Atrial biopsies were obtained during surgery. The plasma and atrium samples were analyzed by GC following trans-methylation to determine FA profile. Post-supplementation, the treatment group had significantly higher plasma levels of 20∶5n−3, 22∶5n−3, and 22∶6n−3 than the placebo group. Analysis of the atrium total lipids revealed a significant increase in the proportion of 20∶5n−3 following fish oil supplementation. There was no significant difference in the concentration of 22∶5n−3 and 22∶6n−3 in the atrium total lipids; however, an upward trend was observed in subjects receiving fish oil supplementation. In the phospholipid fraction of the atrium, both 20∶5n−3 and 22∶6n−3 increased, whereas 20∶4n−6 levels decreased. This study demonstrates for the first time that short-term supplementation with fish oil concentrate results in significant incorporation of LNc-3PUFA with a concomitant depletion of the eicosanoid substrate (20∶4n−6) in the human atrium.  相似文献   

4.
Human erythrocytes in the circulation undergo dynamic oxidative damage involving membrane lipid peroxidation and protein aggregation during aging. The present study was undertaken to determine the effect of n−3 fatty acid supplementation on lipid peroxidation and protein aggregation in the circulation and also the in vitro susceptibility of rat erythrocyte membranes to oxidative damage. Wistar male rats were fed a diet containing n−6 fatty acid-rich safflower oil or n−3 fatty acid-rich fish oil with an equal amount of vitamin E for 6 wk. n−3 Fatty acid content in erythrocyte membranes of rats fed fish oil was significantly higher than that of rats fed safflower oil. The degree of membrane lipid peroxidation and protein aggregation of rats fed fish oil was not significantly higher than that of rats fed safflower oil when the amounts of phospholipid hydroper-oxides, thiobarbituric acid-reactive substances, and detergent-insoluble protein aggregates were measured. When isolated erythrocytes were oxidized under aerobic conditions in the presence of Fe(III), the degree of membrane lipid peroxidation of erythrocytes from rats fed fish oil was increased to a greater extent than that of rats fed safflower oil, whereas the degree of membrane protein aggregation of both groups was increased in a similar extent. Hence, n−3 fatty acid supplementation did not affect lipid peroxidation and protein aggregation in membranes of circulating rat erythrocytes, and the supplementation increased the susceptibility of isolated erythrocytes to lipid peroxidation, but not to protein aggregation, under the aerobic conditions. If a sufficient amount of vitamin E is supplied, n−3 fatty acid supplementation may give no undesirable oxidative effects on rat erythrocytes in the circulation.  相似文献   

5.
Ikemoto A  Ohishi M  Hata N  Misawa Y  Fujii Y  Okuyama H 《Lipids》2000,35(10):1107-1115
Docosahexaenoic acid (DHA, 22∶6n−3) is one of the major polyunsaturated fatty acids esterified predominantly in aminophospholipids such as ethanolamine glycerophospholipid (EtnGpl) and serine glycerophospholipid (SerGpl) in the brain. Synaptosomes prepared from rats fed an n−3 fatty acid-deficient safflower oil (Saf) diet had significantly decreased 22∶6n−3 content with a compensatory increased 22∶5n−6 content when compared with rats fed an n−3 fatty acid-sufficient perilla oil (Per) diet. When the Saf group was shifted to a diet supplemented with safflower oil plus 22∶6n−3 (Saf+DHA) after weaning, 22∶6n−3 content was found to be restored to the level of the Per group. The uptake of [3H]ethanolamine and its conversion to [3H]EtnGpl did not differ significantly among the three dietary groups, whereas the formation of [3H]lysoEtnGpl from [3H]ethanolamine was significantly lower in the Saf group than in the other groups. The uptake of [3H]serine, its incorporation into [3H]SerGpl, and the conversion into [3H]EtnGpl by decarboxylation of [3H]SerGpl did not differ among the three dietary groups. The observed decrease in lysoEtnGpl formation associated with a reduction of 22∶6n−3 content in rat brain synaptosomes by n−3 fatty acid deprivation may provide a clue to reveal biochemical bases for the dietary fatty acids-behavior link.  相似文献   

6.
Sufficient availability of both n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA) is required for optimal structural and functional development in infancy. The question has been raised as to whether infant formulae would benefit from enrichment with 20 and 22 carbon fatty acids. To address this issue, we determined the effect of fish oil and phospholipid (LCPUFA) sources on the fatty acid composition of brain cortical areas and nonneural tissues of newborn piglets fed artificially for 2 wk. They were fed sow milk, a control formula, or the formula enriched with n-3 fatty acids from a low-20:5n-3 fish oil added at a high or a low concentration, or the formula enriched with n-3 and n-6 fatty acids from either egg yolk- or pig brain-phospholipids. Both the fish oil- and the phospholipid-enriched formula produced significantly higher plasma phospholipid 22:6n-3 concentrations than did the control formula. The 22:6n-3 levels in the brain, hepatic, and intestinal phospholipids were significantly correlated with plasma values, whereas cardiac 22:6n-3 content appeared to follow a saturable dose-response. Feeding sow milk resulted in a much higher 20:4n-6 content in nonneural tissues than did feeding formula. Supplementation with egg phospholipid increased the 20:4n-6 content in the heart, red blood cells, plasma, and intestine in comparison to the control formula, while pig brain phospholipids exerted this effect in the heart only. The addition of 4.5% fish oil in the formula was associated with a decline in 20:4n-6 in the cortex, cerebellum, heart, liver, and plasma phospholipids, whereas using this source at 1.5% limited the decline to the cerebellum, liver, and plasma. Whatever the dietary treatment, the phosphatidylethanolamine 20:4n-6 level was 10–20% higher in the brain temporal lobe than in the parietal, frontal, and occipital lobes in the temporal lobe by administering the formula enriched with egg or brain phospholipids. In conclusion, feeding egg phospholipids to neonatal pigs increased both the 22:6n-3 content in the brain and the 20:4n-6 content in the temporal lobe cortex. This source also increased the 22:6n-3 levels in nonneural tissues with only minor alterations of 20:4n-6. These data support the notion that infant formulae should be supplemented with both 22:6n-3 and 20:4n-6 rather than with 22:6n-3 alone.  相似文献   

7.
The susceptibility of major plasma lipoproteins to lipoperoxidation was studied in relation to the FA composition of their neutral and polar lipids in steers given PUFA-rich diets. Two trials used, respectively, 18 (“sunflower” experiment, S) or 24 (“linseed” experiment, L) crossbred Salers x Charolais steers. Each involved three dietary treatments over a 70-d period: a control diet (CS or CL diets) consisting of hay and concentrate, or the same diet supplemented with oilseeds (4% diet dry matter) fed either as seeds (SS or LS diets) or continuously infused into the duodenum (ISO or ILO diets). Compared with control diets, ISO and ILO treatments tended to decrease the resistance time of LDL and HDL classes to peroxidation, mainly owing to the enrichment of their polar and neutral lipids with PUFA. With diets SS and LS, sensitivity of major lipoprotein classes (LDL, light and heavy HDL) was not affected because ruminal hydrogenation of dietary PUFA decreased their incorporation into lipoparticles. ISO and ILO treatments induced a more important production of conjugated dienes and hydroperoxides generated by peroxidation in the three lipoprotein classes due to the higher amounts of PUFA esterified in lipids of the core and the hydrophilic envelope of particles. The production of malondialdehyde (MDA) increased in steers fed linseed supplements, indicating that MDA production did not occur with linoleic acid provided by sunflower oil supplements. Thus, plasma peroxidation of PUFA generates toxic products in steers fed diets supplemented with PUFA and can be deleterious for the health of the animal during long-term treatment.  相似文献   

8.
Male Fischer rats were fed the AIN76A diet containing varying n−6/n−3 FA ratios using sunflower oil (SFO), soybean oil (SOY), and SFO supplemented with EPA-50 and GLA-80 (GLA) as fat sources. Hepatocyte nodules, induced using diethylnitrosamine followed by 2-acetylaminofluorene/partial hepatoctomy promotion, were harvested, with surrounding and respective dietary control tissues, 3 mon after partial hepatectomy. The altered growth pattern of hepatocyte nodules in rats fed SFO is associated with a distinct lipid pattern entailing an increased concentration of PE, resulting in increased levels of 20∶4n−6. In addition, there is an accumulation of 18∶1n−9 and 18∶2n−6 and a decrease in the end products of the n−3 metabolic pathway in PC, suggesting a dysfunctional Δ-6-desaturase enzyme. The hepatocyte nodules of the SFO-fed rats exhibited a significantly reduced lipid peroxidation level that was associated with an increaser in the glutathione (GSH) concentration. The low n−6/n−3 FA ratio diets significantly decreased 20∶4n−6 in PC and PE phospholipid fractions with a concomitant increase in 20∶5n−3, 22∶5n−3, and 22∶6n−3. The resultant changes in the 20∶4/20∶5 FA ratio and the 20∶3n−6 FA level in the case of the GLA diet suggest a reduction of prostaglandin synthesis of the 2-series. The GLA diet also counteracted the increased level of 20∶4n−6 in PE by equalizing the nodule/surrounding ratio. The low n−6/n−3 ratio diets significantly increased lipid peroxidation levels in hepatocyte nodules, mimicking the level in the surrounding and control tissue while GSH was decreased. An increase in n−3 FA levels and oxidative status resulted in a reduction in the number of glutathione-S-transferase positive foci in the liver of the GLA-fed rats. Modulation of cancer development with low n−6/n−3 ratio diets containing specific dietary FA could be a promising tool in cancer intervention in the liver.  相似文献   

9.
n−3 PUFA are well known for their anti-inflammatory effects. However, there has been only limited study on the kinetics of incorporation and depletion of n−3 PUFA in immune cells. In the present study we investigated the incorporation and depletion of n−3 PUFA in erythrocytes and leukocytes in mice during a 6-wk feeding period. Over the first 3-wk period (the incorporation period) the mice were fed a special diet with a high n−3/n−6 PUFA ratio. In the following 3-wk period (the depletion period) the mice were fed a standard chow diet. A linear incease of the concentration of EPA and DHA in erythrocyte membranes was observed during the incorporation period, whereas a stagnation was observed after the second week for leukocytes. The level of EPA did not fall to the background level after the depletion period, and the level of DHA was kept almost constant during the depletion period in the erythrocyte membranes. In leukocytes the concentration of both EPA and DHA decreased during the depletion period, but did not reach the background level after the 3-wk depletion. In conclusion, the kinetics of EPA and DHA in the different cells are different. The rate of incorporation is faster than that of depletion for n−3 PUFA. More n−3 PUFA can be incorporated into leukocytes in comparison with erythrocytes. The ratio of n−3/n−6 PUFA is more important than the amount of n−3 FA in changing the FA compositions of membrane lipids.  相似文献   

10.
Ruyter B  Thomassen MS 《Lipids》1999,34(11):1167-1176
Oxidation, esterification, desaturation, and elongation of [1-14C]18∶2n−6 and [1-14C]18∶3n−3 were studied using hepatocytes from Atlantic salmon (Salmo salar I.) maintained on diets deficient in n−3 and n−6 polyunsaturated fatty acids (PUFA) or supplemented with n−3 PUFA. For both dietary groups, radioactivity from 18∶3n−3 was incoporated into lipid fractions two to three times faster than from 18∶2n−6, and essential fatty acids (FFA) deficiency doubled the incorporation. Oxidation to CO2 was very low and was independent of substrate or diet, whereas oxidation to acid-soluble products was stimulated by EFA deficiency. Products from 18∶2n−6 were mainly 18∶3n−6, 20∶3n−6, and 20∶4n−6, with minor amounts of 20∶2n−6 and 22∶5n−6. Products from 18∶3n−3 were mainly 18∶4n−3, 20∶5n−3, and 22∶6n−3, with small amounts of 20∶3n−3. The percentage of 22∶6n−3 in the polar lipid fraction of EFA-deficient hepatocytes was fourfold higher than in n−3 PUFA-supplemented cells. This correlated well with our other results obtained after abdominal injection of [1-14C]18∶3n−3 and [1-14C]18∶2n−6. In hepatocytes incubated with [4,5-3H]-22∶6n−3, 20∶5n−3 was the main product. This retrocon-version was increased by EFA deficiency, as was peroxisomal β-oxidation activity. This study shows that 18∶2n−6 and 18∶3n−3 can be elongated and desaturated in Atlantic salmon liver, and that this conversion and the activity of retroconversion of very long chain PUFA is markedly enhanced by FFA deficiency.  相似文献   

11.
Bovine muscle n−3 fatty acid content is increased with flaxseed feeding   总被引:2,自引:2,他引:0  
  相似文献   

12.
The fatty acid composition of plasma cholesteryl esters, plasma phospholipids, red blood cell (RBC) membrane phosphatidylcholine (corresponding to the outer membrane leaflet), and phosphatidylethanolamine (corresponding to the inner membrane leaflet) was investigated in weanling guinea pigs fed with diets of cacao (saturated fatty acids), sunflower oil [n−6 polyunsaturated fatty acids (PUFA)] or fish oil (n−3 PUFA) for 20 wk. RBC deformation was measured by means of a cell-transit analyzer (filtration) and a cone-plate rheoscope. The contents of saturated fatty acids in plasma phospholipids and RBC membrane leaflets were similar in all three groups. Diets with sunflower oil resulted in a high content of linoleic acid in plasma cholesteryl esters and in the outer leaflet of RBC membranes. Fatty acids of fish oil were mainly incorporated in plasma phospholipids and in the inner leaflet of RBC membranes. The arachidonic acid content was high in all groups in the plasma phospholipids and in the inner leaflet. The n−6 and n−3 PUFA were mainly incorporated in the inner leaflet. In all groups the polyunsaturated/saturated fatty acid ratio and the total PUFA content were similar in the inner RBC membrane. The RBC filtration times and the RBC deformation indices were not affected by the dietary treatment.  相似文献   

13.
This work was undertaken to study the impact of the source of n−3 FA on their incorporation in serum, on blood lipid composition, and on cellular activation. A clinical trial comprising 71 volunteers, divided into five groups, was performed. Three groups were given 400 g smoked salmon (n=14), cooked salmon (n=15), or cooked cod (n=13) per week for 8 wk. A fourth group was given 15 mL/d of cod liver oil (CLO) (n=15), and a fifth group served as control (n=14) without supplementation. The serum content of EPA and DHA before and after intervention revealed a higher rise in EPA and DHA in the cooked salmon group (129% rise in EPA and 45% rise in DHA) as compared with CLO (106 and 25%, respectively) despite an intake of EPA and DHA in the CLO group of 3.0 g/d compared with 1.2 g/d in the cooked salmon group. No significant changes were observed in blood lipids, fibrinogen, fibrinolysis, or lipopolysaccharide (LPS)-induced tissue factor (TF) activity, tumor necrosis factor-α (TNFα), interleukin-8 (IL-8), leukotriene B4 (LTB4), and thromboxane B2 (TxB2) in whole blood. EPA and DHA were negatively correlated with LPS-induced TNFα, IL-8, LTB4, TxB2, and TF in whole blood. In conclusion, fish consumption is more effective in increasing serum EPA and DHA than supplementing the diet with fish oil. Since the n−3 FA are predominantly in TAG in fish as well as CLO, it is suggested that the larger uptake from fish than CLO is due to differences in physiochemical structure of the lipids.  相似文献   

14.
n−3 fatty acid enrichment of edible tissue of poultry: A review   总被引:1,自引:0,他引:1  
Rymer C  Givens DI 《Lipids》2005,40(2):121-130
There is clear evidence of the nutritional benefits of consuming long-chain n−3 PUFA, which are found predominantly in oily fish. However, oily fish consumption, particularly in the United Kingdom, is declining, as is the consumption of all meats with the exception of poultry, which has increased in consumption by 73% in the last 30 yr. This pattern, if less marked, is reflected throughout Europe, and therefore one means of increasing long-chain n−3 PUFA consumption would be to increase the long-chain n−3 PUFA content in the edible tissues of poultry. This review considers the feasibility of doing this, concentrating particularly on chickens and turkeys. It begins by summarizing the benefits to human health of consuming greater quantities of n−3 FA and the sources of n−3 PUFA in the human diet. The literature on altering the FA composition of poultry meat is then reviewed, and the factors affecting the incorporation of n−3 PUFA into edible tissues of poultry are investigated. The concentration of α-linolenic acid (ALA) in the edible tissues of poultry is readily increased by increasing the concentration of ALA in the birds' diet (particularly meat with skin, and dark meat to a greater extent than white meat). The concentration of EPA in both white and dark meat is also increased when the birds' diet is supplemented with EPA, although supplementing the diet with the precursor (ALA) does not result in a noticeable increase in EPA content in the edible tissues. Although supplementing the birds' diets with relatively high concentrations of DHA does result in an increased concentration of DHA in the tissues, the relationship between dietary and tissue concentrations of DHA is much weaker than that observed with ALA and EPA. The impact that altering the FA composition of edible poultry tissue may have on the organoleptic and storage qualities of poultry products is also considered.  相似文献   

15.
In this study, we examined the effect of dietary arachidonic acid (AA) and sesame lignans on the content and n-6/n-3 ratio of polyunsaturated fatty acid (PUFA) in rat liver and the concentrations of triglyceride (TG) and ketone bodies in serum. For 4 wk, rats were fed two types of dietary oils: (i) the control oil diet groups (CO and COS): soybean oil/perilla oil=5∶1, and (ii) the AA-rich oil group (AO and AOS): AA ethyl esters/palm oil/perilla oil=2∶∶1, with (COS and AOS) or without (CO and AO) 0.5% (w/w) of sesame lignans. Dietary AA and sesame lignans significantly affected hepatic PUFA metabolism. AA content and n-6/n-3 ratio in the liver were significantly increased in the AO group, despite the dietary total of n-6 PUFA being the same in all groups, while AOS diet reduced AA content and n-6/n-3 ratio to a level similar to the CO and COS groups. These results suggest that (i) dietary AA considerably affects the hepatic profile and n-6/n-3 ratio of PUFA, and (ii) dietary sesame lignans reduce AA content and n-6/n-3 ratio in the liver. In the AO group, the concentration of acetoacetate was significantly increased, but the ratio of β-hydroxybutyrate/acetoacetate was decreased. On the other hand, the AO diet increased the concentration of TG in serum by almost twofold as compared to other groups. However, the AOS diet significantly reduced serum IG level as compared to the AO group. In addition, the AOS diet signicantly increased the acetoacetate level, but reduced the β-hydroxybutyrate/acetoacetate ratio. These results suggest that dietary sesame lignans promote ketogenesis and reduce PUFA esterification into TG. This study resulted in two findings: (i) sesame lignans inhibited extreme changes of the n-6/n-3 ratio by reducing hepatic PUFA content, and (ii) the reduction of hepatic PUFA content may have occurred because of the effects of sesame lignans on PUFA degradation (oxidation) and esterification.  相似文献   

16.
Artificially reared infant rats were used to determine the effects of long-chain polyunsaturated fatty acid (LCP-UFA) supplementation on blood and tissue concentrations of arachidonic acid (AA) and docosahexaenoic acid (DHA). Beginning at 7 d of age, infant rats were fed for 10 d with rat milk formulas supplemented with AA at 0,0.5 and 1.0%, or supplemented with DHA at 0,0.5 and 1.0% of total fatty acid. The supplementation of AA increased accretion of the fatty acid in tissue and blood phospholipids with a maximum increase of 9% in brain, 15% in liver, 25% in erythrocytes, and 43% in plasma above the values of unsupplemented infant rats. Rat milk formula containing 1.0% of AA had no added benefits over that containing 0.5% of AA. The supplementation of DHA increased phospholipid DHA by a maximum of 24% in brain, 87% in liver, 54% in erythrocytes, and 360% in plasma above the unsupplemented control. The increase in tissue and blood DHA was concentration-dependent on formula fatty acid. Brain phosphatidylcholine and phosphatidylethanolamine were similarly enriched with AA and DHA by supplementation of the corresponding fatty acids. In general the observed increase of AA was accompanied by a decrease in 16:0, 18:1n−9, and/or 18:2n−6, whereas the increased DHA was associated with a reduction of 18:1n−9, 18:2n−6, and/or 20:4n−6. Clearly, infant rats were more responsive to DHA than AA supplementation, suggesting a great potential of dietary manipulation to alter tissue DHA concentrations. However, the supplementation of DHA significantly decreased tissue and blood AA/DHA ratios (wt%/wt%), whereas there was little or no change in the ratio by AA supplementation. Although the physiological implications of the levels of AA and DHA, and AA/DHA ratios achieved under the present experimental conditions are not readily known, the findings suggest that artificial rearing could provide a suitable model to investigate LCPUFA requirements using various sources of AA and DHA in rats.  相似文献   

17.
Dietary fish oil supplements have been shown to have benefits in rheumatoid arthritis (RA), other inflammatory diseases, and in cardiovascular disease. As with any medical advice, variability will exist with regard to adherence and consequent biochemical or pharmacophysiologic effects. The aim was to explore the utility of plasma phospholipid EPA as a measure of n−3 PUFA intake and response to standardized therapeutic advice given in an outpatient or office practice setting, to increase dietary n−3 PUFA, including a fish oil supplement. Patients with early RA were given verbal and written advice to alter their dietary n−3 PUFA intake, including ingestion of 20 mL of bottled fish oil on juice daily. The advice included instructions to increase n−3 PUFA and to avoid foods rich in n−6 PUFA. Every 3 mon, blood samples were obtained for analysis of plasma phospholipid FA. Plasma phospholipid EPA was used as the primary index of n−3 PUFA intake. A diverse response was seen, with about one-third of patients achieving a substantial elevation of plasma phospholipid EPA over the 12-mon study period. A third had little change, with the remainder achieving intermediate levels. Data obtained longitudinally from individual patients indicated that substantial elevations of EPA (>5% total plasma phospholipid FA) could be maintained for more than 3 yr. Plasma phospholipid EPA is a convenient measure of adherence to advice to take a dietary n−3 PUFA-rich fish oil supplement. This measure may prove a useful adjunct to intention to treat analyses in determining the effect of dietary fish oil supplements on long-term outcomes in arthritis and other chronic inflammatory diseases. It may also provide a guide to the effectiveness of therapeutic and preventive messages designed to increase n−3 PUFA intake.  相似文献   

18.
By using a 500 MHz proton nuclear magnetic resonance (1H NMR) spectrometer we have developed a quantitative method for determining the contents of docosahexaenoic acid (DHA) in fish oils (mg/g), the molar proportions (mol%) of DHA to all other fatty acids composing the fish oils, and the molar proportions of total n-3 fatty acids to all other non-n-3 fatty acids in the fish oils. After examining the suitability of ethylene glycol dimethyl ether (EGDM), methanol, and 1,4-dioxane as internal standards, experimental conditions were optimized by mainly using EGDM as an internal standard. By setting the pulse repetition time at 30 s, five times longer than the longest T 1 of the 1H NMR signals of fish oils, good reproductibility of data and analytical times less than 10 min were achieved. The use of the internal standard also allowed us to quantify DHA on a weight basis (mg/g). Verification of the method was carried out in an interlaboratory study between Japan and Norway on bonito, tuna, and salmon oils. The relative errors in the 1H NMR data between Japan and Norway were 0.57–5.29% for quantification of DHA, 0.7–2.09% for the molar proportion of DHA, and 0.1–1.41% for the molar proportion of total n-3 fatty acids. Good agreement was observed between the 1H NMR data and those obtained by gas chromatography (GC). The sample preparation before 1H NMR measurements required only two steps: sample weighing and preparation of an internal standard solution. Based on the high reproducibility, simplicity of the procedure, and clarity of principle, the proposed 1H NMR method was judged to be a promising alternative to the GC method in quantification of DHA and n-3 fatty acids in fish oils.  相似文献   

19.
Arachidonic acid (20∶4n−6, ArA) and its eicosanoid metabolites have been demonstrated to be implicated in immune functions of vertebrates, fish, and insects. Thus, the aim of this study was to assess the impact of ArA supplementation on the FA composition and hemocyte parameters of oysters Crassostrea gigas. Oyster dietary conditioning consisted of direct addition of ArA solutions at a dose of 0, 0.25, or 0.41 μg ArA per mL of seawater into tanks in the presence or absence of T-Iso algae. Results showed significant incorporation of ArA into gill polar lipids when administered with algae (up to 19.7%) or without algae (up to 12.1%). ArA supplementation led to an increase in hemocyte numbers, phagocytosis, and production of reactive oxygen species by hemocytes from ArA-supplemented oysters. Moreover, the inhibitory effect of Vibrio aestuarianus extracellular products on the adhesive proprieties of hemocytes was lessened in oysters fed ArA-supplemented T-Iso. All changes in oyster hemocyte parameters reported in the present study suggest that ArA and/or eicosanoid metabolites affect oyster hemocyte functions.  相似文献   

20.
Cleland LG  Gibson RA  Pedler J  James MJ 《Lipids》2005,40(10):995-998
Flaxseed, echium, and canola oils contain α-linolenic acid (18∶3n−3, ALA) in a range of concentrations. To examine their effect on elevating cardiac levels of long-chain n−3 FA, diets based on these n−3-containing vegetable oils were fed to rats for 4 wk. Sunflower oil, which contains little ALA, was a comparator. Despite canola oil having the lowest ALA content of the three n−3-containing vegetable oils, it was the most potent for elevating DHA (22∶6n−3) levels in rat hearts and plasma. However, the relative potencies of the dietary oils for elevation of EPA (20∶5n−3) in heart and plasma followed the same rank order as their ALA content, i.e., flaxseed>echium>canola>sunflower oil. This paradox may be explained by lower ALA intake leading to decreased competition for Δ6 desaturase activity between ALA and the 24∶5n−3 FA precursor to DHA formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号