首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
采用碱性蛋白酶水解鸭肉蛋白制备鸭肉肽,通过响应面分析方法时水解条件进行优化,得到较佳的水解工艺为:酶解温度54.7℃,酶用量2.03%,底物浓度3.78%,pH9.86,时间为120min.在此条件下,碱性蛋白酶的水解度为29.6%,水解液中鸭肉肤含量为43.7%,氨基酸含量为25.79 g/L,其中必需氨基酸为10.53 g/L.  相似文献   

2.
响应曲面法优化鸡肉蛋白抗氧化肽制备工艺研究   总被引:1,自引:0,他引:1  
以酶解产物清除超氧阴离子自由基能力为指标,利用响应曲面法优选木瓜蛋白酶制备鸡肉蛋白抗氧化肽的最佳酶解工艺条件并考察其水解度(DH)和清除能力的相关性。结果表明:木瓜蛋白酶最佳酶解工艺为温度62℃、pH6.7、酶用量5988U/g、酶解时间6.5h、底物浓度6.9%;清除率与DH 在一定范围内呈正或负相关,即在酶解过程6.5h 内清除率随着DH增大而增大、6.5h 后随着DH的增加反而减小,6.5 h 时清除率为32.91%、DH为18.66%。  相似文献   

3.
屠瀚超 《中国油脂》2020,45(6):36-40
以岩豆为原料,分别以盐提法和水提法提取蛋白,通过比较盐溶蛋白和水溶蛋白的DPPH自由基清除能力,得出盐溶蛋白的DPPH自由基清除能力较高。以岩豆盐溶蛋白为原料,采用响应面优化酶解法制备岩豆抗氧化肽的工艺条件。结果表明,以DPPH自由基清除率为评价指标,筛选出胃蛋白酶为最优酶制剂。酶解法制备岩豆抗氧化肽最优工艺条件为底物质量浓度0. 8 mg/mL、酶解温度34℃、酶添加量1 100 U/g、酶解时间36 min、酶解pH 2. 0,此条件下岩豆抗氧化肽的DPPH自由基清除率为70. 41%,多肽得率为53. 63%。  相似文献   

4.
酶法制备汉麻籽蛋白抗氧化肽   总被引:6,自引:0,他引:6  
采用不同蛋白酶酶解汉麻籽蛋白,确定Alcalase 2.4L碱性蛋白酶是酶解汉麻籽蛋白制备抗氧化肽的优良酶源。通过单因素和响应面回归分析,得到Alcalase 2.4L碱性蛋白酶酶解汉麻籽蛋白的优化条件为:底物浓度50 mg/mL、水解时间2 h、温度50℃、加酶量2.2%、pH 9.4。优化酶解条件下,水解度约为20%,10 mg/ mL酶解产物的DPPH自由基清除率为82.65%,显示出较好的抗氧化活性。  相似文献   

5.
以鱿鱼肌肉为原料,先考察了酶解时间、温度和加酶量对鱿鱼蛋白肽清除羟自由基的影响,再采用BoxBehnken实验设计和响应面分析对鱿鱼肌肉酶解工艺条件进行优化。同时采用清除自由基和小鼠体内抗氧化活性对抗氧化肽的抗氧化活性进行了研究。结果表明:酶解时间、加酶量对羟自由基清除率影响最为显著(p<0.01),最佳工艺条件为:酶解时间6 h,加酶量0.07 g/10 g,酶解温度55℃。在该条件下,羟自由基清除率的验证值为90.31%±0.54%。鱿鱼抗氧化肽对DPPH·、OH·和O-2·的EC50分别为8.8、16.5和10.3 mg/m L。鱿鱼抗氧化肽高低剂量组的小鼠体内SOD活性分别比空白组高19.2%和14.2%。抗氧化肽高低剂量组小鼠体内的GSH比空白组提高了23.4%和14%。鱿鱼抗氧化肽具有较强的抗氧化活性。   相似文献   

6.
以牦牛皮为原料,用碱性蛋白酶水解牦牛皮蛋白制备抗氧化肽。以水解度和牦牛皮蛋白水解物对DPPH自由基清除率的IC50值为评价指标,在单因素实验的基础上,结合响应面(Box-Behnken)试验设计筛选出牦牛皮抗氧化肽的最佳制备工艺。结果表明,最佳制备工艺为:水解温度51 ℃,酶用量10890 U/g,水解时间10.6 h,pH8.5,底物浓度5%,此时水解度为41.39%±0.69%,牦牛皮抗氧化肽清除DPPH·、ABTS+·、·OH的IC50值分别为2.884、2.110、2.523 mg/mL。综上,该制备工艺下的牦牛皮抗氧化肽对自由基有良好的清除能力,且有较强的还原能力,说明牦牛皮抗氧化肽有望作为天然抗氧化剂得到开发利用。  相似文献   

7.
目的优化苜蓿叶蛋白制备抗氧化肽的条件。方法以现蕾期苜蓿叶为原材料,利用加热法提取苜蓿叶蛋白,再分别用碱性蛋白酶、中性蛋白酶、木瓜蛋白酶、胰蛋白酶、胃蛋白酶等5种蛋白酶分别进行水解。以酶解时间、酶解温度、酶解pH为影响因素,以提取物水解液对DPPH自由基的清除率为指标,采用单因素试验和正交试验对苜蓿叶蛋白制备抗氧化肽的条件进行优化。结果 5种蛋白酶中,碱性蛋白酶酶活力较高、比较稳定、具有较强的DPPH清除能力。各因素对抗氧化值影响的顺序依次为pH、温度、时间,最适水解条件为酶解时间4.0 h,温度55℃,pH 11.50,在此条件下,清除率为(58.10±1.09)%。结论在最优条件下用酶解法可制备具有较高抗氧化活性的植物肽。  相似文献   

8.
小黄鱼抗氧化肽制备条件的响应面优化   总被引:1,自引:0,他引:1  
目的:优化胰蛋白酶(PTN 6.0S)酶解小黄鱼制备抗氧化肽的条件。方法:以酶解产物对1,1-二苯基苦基苯肼 (DPPH)自由基的清除率为指标,通过单因素试验及响应曲面法优化酶解条件。结果:酶解条件在pH7.0、温度52℃、时间19h、底物质量浓度4.2g/100mL,酶与底物比6‰时,产物对DPPH自由基的清除率达到最大值(46.90±0.3)%。响应面分析表明,酶解时间对产物的抗氧化活性有显著影响;温度与酶与底物比、时间与底物质量浓度、酶与底物比与底物质量浓度在酶解工艺中存在复杂的交互作用。  相似文献   

9.
为获得制备银杏抗氧化肽的最佳工艺,采用2709碱性蛋白酶和胃蛋白酶分步水解银杏种仁蛋白,以总还原能力为指标,考察酶用量、酶解温度、pH值和酶解时间这4个因素对银杏种仁蛋白酶解效果的影响。通过响应面试验得出2709碱性蛋白酶的最佳酶解工艺为:酶用量为6976U/g、酶解温度为55℃、pH值为8.9、酶解时间为5h,此时银杏种仁蛋白酶解液的总还原能力(A700nm)为1.278;通过正交试验,得到胃蛋白酶的最佳酶解工艺为:酶用量为9000U/g、pH值为3.0、酶解温度为50℃、酶解时间为2h,此时银杏种仁蛋白酶解液的A700nm为1.636。  相似文献   

10.
不同提取方法对金华火腿粗肽液抗氧化活性的影响   总被引:1,自引:0,他引:1  
研究两种提取方法(磷酸盐和盐酸)所得金华火腿粗肽液的抗氧化活性,以自由基的清除能力,金属离子螯合能力,还原力以及总抗氧化能力为测定指标,以还原型谷胱甘肽(GSH)作对照。结果表明:磷酸盐法提取的金华火腿粗肽液(P)多肽含量显著(p<0.05)高于盐酸法提取的金华火腿粗肽液(H);质量浓度低于5mg/m L时,P和H清除DPPH自由基与超氧阴离子自由基能力无显著差异;P螯合金属离子的能力显著(p<0.05)高于H和GSH;当质量浓度为4mg/m L时,P还原力显著(p<0.05)高于H;当质量浓度为1mg/m L时,P总抗氧化能力达到GSH的48%,显著高于H(p<0.05)。因此磷酸盐所提取的金华火腿粗肽液抗氧化能力优于盐酸所提取的金华火腿粗肽液。   相似文献   

11.
赵川川  潘道东 《食品科学》2010,31(14):26-31
为获得具有抗氧化活性的绍兴麻鸭肉酶解产物,在单因素试验基础上,采用响应面分析法,以水解度作为指标,优化木瓜蛋白酶水解鸭肉的最佳工艺条件,并用该水解物做抗氧化活性实验。结果表明:木瓜蛋白酶水解鸭肉蛋白的最佳水解条件为温度56.9℃、pH7.2、底物与酶质量比69.9:1。在最佳水解条件下制得的水解产物清除超氧阳离子自由基(O2 - ·)、羟自由基(·OH)和DPPH 自由基的半抑制浓度IC50 分别为13.06、11.96、21.13mg/mL。  相似文献   

12.
以海洋微藻饵料微拟球藻蛋白为原料,采用胃蛋白酶酶解制备微拟球藻抗氧化肽。以酶解产物的水解度和1,1-二苯基-2-三硝基苯肼自由基清除活性为评价指标,研究酶底比(质量百分比)、底物质量浓度、酶解温度和pH值对酶解产物的影响。在单因素试验的基础上,利用响应面法优化制备高抗氧化活性抗氧化肽的工艺条件,确定最佳酶解工艺条件为:底物质量浓度5.0?mg/mL、酶解温度32?℃、pH?1.36、酶底比6%。在最佳酶解条件下实际测得微拟球藻抗氧化肽的DPPH自由基清除率为51.85%。  相似文献   

13.
以侗族酸肉、苗族酸肉两种酸肉为原料,采用木瓜、碱性、风味及中性蛋白酶四种蛋白酶进行酶解,测定酶解液短肽得率、羟自由基及DPPH自由基清除率,结果表明碱性蛋白酶酶解液的短肽得率(侗族86.01%,苗族82.52%)、羟自由基(侗族87.48%,苗族79.88%)及DPPH自由基(侗族74.63%,苗族87.87%)清除率最高。通过比较分析苗族酸肉较侗族酸肉短肽得率更高,因此选择以蛋白酶种类、加酶量、酶解时间及料液比为自变量的单因素试验基础上,以苗族酸肉短肽得率及DPPH自由基清除率为评价指标,采用响应面优化最佳酶解条件。结果表明,酸肉抗氧化肽最佳酶解工艺为:碱性蛋白酶添加量12600 U/g、酶解时间1 h、料液比1:1.09(m:V)。在此最优条件下酶解获得的抗氧化肽得率为83.35%,是预测值的98.99%,DPPH自由基清除率力为84.01%,是预测值的97.33%,与预测值基本一致,表明以碱性蛋白酶酶解的酸肉肽具有较高的抗氧化活性及营养价值,同时为酸肉抗氧化肽的开发及利用提供理论依据。  相似文献   

14.
15.
利用米曲霉固态发酵制曲结合成曲水解制备大豆抗氧化肽。分别以豆粕和麸皮为氮源和碳源,研究米曲霉制曲的原料碳氮比(cnq、制曲培养时间、曲精接种量对成曲水解特性(成曲蛋白酶活、水解度、肽得率、蛋白质回收率)及其水解产物抗氧化活性(抗氧化能力指数ORAC值、DPPH自由基清除率)的影响。在此基础上,通过正交试验研究四因素(包括pH、外源添加大豆分离蛋白、底物蛋白浓度和水解时间)对成曲水解产物抗氧化活性的影响,以期筛选出水解产物抗氧化活性较高的大豆肽。结果表明:制曲条件为:麸皮/豆粕质量比为l/5、培养时间44h、曲精接种量0.05%(m/m);成曲水解条件为:pH7、底物蛋白浓度8%、不添加外源蛋白、水解4h时,所得成曲的碱陛蛋白酶活力可高达3109.85U/g,曲水解产物的ORAC值可高达2130.22ImaolTroloxequivalent/gpeptide,DPPH的IC50值为0.29mg/mL,具有强抗氧化活性。  相似文献   

16.
海产小杂鱼抗氧化肽制备工艺   总被引:4,自引:0,他引:4  
以海产小杂鱼为原料,分别测定风味蛋白酶、中性蛋白酶、胰蛋白酶和碱性蛋白酶酶切小杂鱼所得酶解液的羟自由基清除率,结果表明中性蛋白酶的酶解液羟自由基清除率最高,并且氨基态氮含量较高。以中性蛋白酶为试验用酶,通过正交试验L9(34)得到制备小杂鱼抗氧化肽最佳酶解条件为反应pH7.0、料液比1:2、加酶量500U/g、反应温度42℃,所得的酶解液对羟自由基清除率高达95%以上。Sephadex G75凝胶分离结果显示海产小杂鱼抗氧化肽混合物主要由分子质量低于3000D的肽类组成。  相似文献   

17.
以冰鲜石斑鱼肉为原料,采用碱性蛋白酶酶解的方法制备蛋白肽。以水解度和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除率为评价指标,在单因素试验的基础上,运用正交试验设计优化肽的制备工艺;利用DPPH自由基法、2,2’-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(2,2’-azinobis(3-ethylbenzothi azoline-6-sulfonic acid)ammonium salt,ABTS)自由基法、羟自由基(·OH)法和铁氰化钾还原法评价酶解物的抗氧化性。结果表明:石斑鱼肉肽的最佳制备条件为:酶解温度55 ℃、酶解pH 9、酶用量5 000 U/g、底物质量浓度8 g/100 mL、酶解时间5 h;石斑鱼肉肽酶解物具有较强的抗氧化性,清除DPPH自由基能力、ABTS+·能力、·OH能力和总还原力均随酶解物质量浓度的增加而增强;酶解物清除DPPH自由基、ABTS+·、·OH的半抑制浓度(IC50)值分别为(1.18±0.26)、(0.89±0.05) mg/mL和(0.35±0.02) mg/mL。  相似文献   

18.
王璐莎  陈玉连  黄明  周光宏 《食品科学》2015,36(17):146-151
为了解酶解时间、蛋白酶种类对鸭肉蛋白酶解产物抗氧化特性的影响,分别用复合蛋白酶、风味蛋白酶和胰酶对鸭肉进行单酶酶解和双酶分步酶解(胰酶+复合蛋白酶、胰酶+风味蛋白酶),制备不同时间段的酶解产物,并对其自由基清除能力(1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、羟自由基(hydroxyl radical,·OH)和超氧阴离子自由基(superoxide radical,O2-·))和总还原力进行分析。结果表明:各鸭肉蛋白酶解产物的DPPH自由基清除率随着酶解时间的延长而增加,但·OH和O2-·清除率及总还原力随着酶解时间的延长先增加后降低(P<0.05)。在5 种鸭肉蛋白酶解产物中,复合蛋白酶酶解物表现出最强的DPPH自由基清除能力(75.70±1.54)%、·OH清除能力(59.41±1.24)%和O2-·清除能力(98.50±4.51)%,但用双酶分步酶解得到的酶解产物表现出最强的总还原力(0.330±0.017)。因此鸭肉蛋白酶解产物的抗氧化特性受酶解时间和蛋白酶种类的影响,复合蛋白酶是制备鸭肉蛋白源抗氧化肽的最适蛋白酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号