首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
The biomass of terrestrial-plant materials has high removal capacities for a number of heavy metal ions. The Ni(II) biosorption capacity of the cone biomass of Thuja orientalis was studied in the batch mode. The biosorption equilibrium level was determined as a function of contact time, pH, temperature, agitation speed at several initial metal ion and adsorbent concentrations. The removal of Ni(II) from aqueous solutions increased with adsorbent concentration, temperature and agitation speed of the solution were increased. The biosorption process was very fast; 90% of biosorption occurred within 3 min and equilibrium was reached at around 7 min. It is found that the biosorption of Ni(II) on the cone biomass was correlated well (R2 > 0.99) with the Langmuir equation as compared to Freundlich, BET Temkin and D-R isotherm equation under the concentration range studied. According to Langmuir isotherm, the monolayer saturation capacity (Q(o)) is 12.42 mg g(-1). The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to test the experimental data for initial Ni(II) and cone biomass concentrations. The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The activation energy of biosorption (E(a)) was determined as 36.85 kJ mol(-1) using the Arrhenius equation. This study indicated that the cone biomass of T. orientalis can be used as an effective and environmentally friendly adsorbent for the treatment of Ni(II) containing aqueous solutions.  相似文献   

2.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

3.
The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH(2) groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions.  相似文献   

4.
Hu J  Chen C  Zhu X  Wang X 《Journal of hazardous materials》2009,162(2-3):1542-1550
The batch removal of hexavalent chromium (Cr(VI)) from aqueous solution by using oxidized multiwalled carbon nanotubes (MWCNTs) was studied under ambient conditions. The effect of pH, initial concentration of Cr(VI), MWCNT content, contact time and ionic strength on the removal of Cr(VI) was also investigated. The removal was favored at low pH with maximum removal at pH <2. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, pseudo-second-order kinetics, and intraparticle diffusion models, respectively. The rate constants for all these kinetic models were calculated, and the results indicate that pseudo-second-order kinetics model was well suitable to model the kinetic adsorption of Cr(VI). The removal of chromium mainly depends on the occurrence of redox reaction of adsorbed Cr(VI) on the surface of oxidized MWCNTs to the formation of Cr(III), and subsequent the sorption of Cr(III) on MWCNTs appears as the leading mechanism for chromium uptake to MWCNTs. The presence of Cr(III) and Cr(VI) on oxidized MWCNTs was confirmed by the X-ray photoelectron spectroscopic analysis. The application of Langmuir and Freundlich isotherms are applied to fit the adsorption data of Cr(VI). Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWCNTs can effectively remove Cr(VI) from aqueous solution under a wide range of experimental conditions, without significant Cr(III) release.  相似文献   

5.
Biosorption of nickel and copper ions from aqueous solution onto treated alga biomass Undaria pinnatifida has been studied and the Langmuir, Freundlich and Temkine equilibrium isotherms, pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic model were determined respectively. Within the test range (initial concentration 5–50 mg/L, biosorption doze 0.1–0.5 g, pH 3–7), biosorption performance for metal ions showed an increase in specific metal uptake capacity with an increasing in initial ions concentration and decreasing in biosorbent doze. The optimized condition of pH value for nickel and copper is 4.7 and 4.0, respectively, while contact time is about 100 min. At equilibrium, the maximum total uptake by U. pinnatifida was 24.71 mg/g for nickel and 38.82 mg/g for copper. The results for nickel and copper fit well to the Langmuir and the Temkin isotherm, respectively. Pseudo-second-order model described well the sorption kinetic of nickel and copper ions in comparison to pseudo-first-order and intra-particle diffusion kinetic model.  相似文献   

6.
In this study, biosorption of Cr (VI) ion was investigated by using biomass of Agaricus bisporus (a species of mushroom) in a temperature and shaking speed controlled shaker. The effect of shaking speed, biomass concentration, initial metal ion concentration and initial pH on biosorption yield was determined and the fitness of biosorption data for Freundlich and Langmuir adsorption models was investigated. Optimum biosorption conditions were found to be pH 1, C0=50 mg/l, m=10 g/l, shaking speed=150 rpm, T=20 degrees C Cr (VI), respectively. It was found that biosorption of Cr (VI) ions onto biomass of A. bisporus was better suitable to Freundlich adsorption model than Langmuir adsorption model. The correlation coefficients for the second-order kinetic model obtained were found to be 0.999 for all concentrations. These indicate that the biosorption system studied belongs to the second-order kinetic model.  相似文献   

7.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the macrofungus (Amanita rubescens) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by A. rubescens biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum biosorption capacity of A. rubescens for Pb(II) and Cd(II) was found to be 38.4 and 27.3mg/g, respectively, at optimum conditions of pH 5.0, contact time of 30min, biomass dosage of 4 g/L, and temperature of 20 degrees C. The metal ions were desorbed from A. rubescens using both 1M HCl and 1M HNO(3). The recovery for both metal ions was found to be higher than 90%. The high stability of A. rubescens permitted ten times of adsorption-elution process along the studies without a decrease about 10% in recovery of both metal ions. The mean free energy values evaluated from the D-R model indicated that the biosorption of Pb(II) and Cd(II) onto A. rubescens biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, DeltaG degrees , DeltaH degrees and DeltaS degrees showed that the biosorption of Pb(II) and Cd(II) ions onto A. rubescens biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both Pb(II) and Cd(II) followed well pseudo-second-order kinetics. Based on all results, It can be also concluded that it can be evaluated as an alternative biosorbent to treatment wastewater containing Pb(II) and Cd(II) ions, since A. rubescens is low-cost biomass and has a considerable high biosorption capacity.  相似文献   

8.
Some industrial wastewaters contain high quantities of salts besides heavy metal ions. The presence of salt ions leads to high ionic strength, which may significantly affect the performance of the biosorption process so the effect of salts on the biosorption of heavy metal ions should be investigated. In this study the biosorption of chromium(VI) from saline solutions on dried Rhizopus arrhizus was studied as a function of pH, initial chromium(VI) and salt (NaCl) concentrations in a batch system. The biosorption capacity of R. arrhizus strongly depended on solution pH and maximum chromium(VI) sorption capacity of sorbent was obtained at pH 2.0 both in the absence and in the presence of increasing concentrations of salt. Chromium(VI)-salt biosorption studies were performed at this pH value. Equilibrium uptakes of chromium(VI) increased with increasing chromium(VI) concentration up to 250mgl(-1) and decreased considerably by the presence of increasing concentrations of salt. At 100mgl(-1), initial chromium(VI) concentration, dried R. arrhizus biosorbed 78.0mgg(-1) of chromium(VI) in 72h without salt medium. When salt concentration was raised to 50gl(-1), this value dropped to 64.0mgg(-1) of chromium(VI) at the same conditions resulting in 17.9% decrease of biosorption capacity. The equilibrium sorption data were analysed by using Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich (Sips), the two and three parameters adsorption models, using non-linear regression technique and isotherm constants were evaluated depending on salt concentration. The Langmuir-Freundlich (Sips) was the best suitable adsorption model for describing the biosorption of chromium(VI) individually and in salt-containing medium. Pseudo-first-order, pseudo-second-order and saturation type kinetic models described the biosorption kinetics accurately at all chromium(VI) concentrations in the absence and in the presence of changing concentrations of salt. Isotherm and saturation type kinetic constants varied due to the level of salt were expressed as a function of initial salt concentration.  相似文献   

9.
The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl(2)) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model best describes the biosorption of cadmium, nickel and lead ions.  相似文献   

10.
The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.  相似文献   

11.
Biosorption equilibrium, kinetics and thermodynamics of binding of uranium ions to Cystoseria indica were studied in a batch system with respect to temperature and initial metal ion concentration. Algae biomass exhibited the highest uranium uptake capacity at 15 °C at an initial uranium ion concentration of 500 mg l−1 and an initial pH of 4. Biosorption capacity increased from 198 to 233 mg g−1 with an decrease in temperature from 45 to 15 °C at this initial uranium concentration. The Langmuir isotherm model were applied to experimental equilibrium data of uranium biosorption depending on temperature. Equilibrium data fitted very well to the Langmuir model C. indica algae in the studied concentration range of Uranium ions at all the temperatures studied. The saturation type kinetic model was applied to experimental data at different temperatures changing from 15 to 45 °C to describe the batch biosorption kinetics assuming that the external mass transfer limitations in the system can be neglected and biosorption is chemical sorption controlled. The activation energy of biosorption (EA) was determined as −6.15 using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (ΔG°, ΔH° and ΔS°) were also evaluated.  相似文献   

12.
The removal of chromium (VI) ions from aqueous solutions by the biomass of two marine strains of Yarrowia lipolytica (NCIM 3589 and 3590) was studied with respect to pH, temperature, biomass, sea salt concentration, agitation speed, contact time and initial concentration of chromium (VI) ions. Maximum biosorption was observed at pH 1.0 and at a temperature of 35 °C. Increase in biomass and sea salts resulted in a decreased metal uptake. With an agitation speed of 130 rpm, equilibrium was attained within 2 h. Under optimum conditions, biosorption was enhanced with increasing concentrations of Cr (VI) ions. NCIM 3589 and 3590 displayed a specific uptake of Cr (VI) ions of 63.73 ± 1.3 mg g−1 at a concentration of 950 ppm and 46.09 ± 0.23 mg g−1 at 955 ppm, respectively. Scatchard plot analysis revealed a straight line allowing the data to be fitted in the Langmuir model. The adsorption data obtained also fitted well to the Freundlich isotherm. The surface sequestration of Cr (VI) by Y. lipolytica was investigated with a scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) as well as with ED-X-ray fluorescence (ED-XRF). Fourier transform infrared (FTIR) spectroscopy revealed the involvement of carboxyl, hydroxyl and amide groups on the cell surfaces in chromium binding.  相似文献   

13.
Biosorption of toxic metal ions from industrial effluents using different plant parts is an important branch of environmental chemistry. Biosorption of copper(II) and chromium(VI) ions from aqueous solution onto sorghum root (SR) powder have been investigated under batch mode. The optimum pH and temperature for biosorption of both the metals was found to be 2 and 20 °C, respectively. The maximum biosorption capacity q e for Cu(II) and Cr(VI) is 18.6 and 18.39 mg/g, respectively. The Langmuir model gave a better fit than other two models. The kinetic studies indicated that the biosorption process of the metal ions followed well pseudo-second-order model. The thermodynamic parameters were also calculated and the values indicated that the biosorption process was exothermic, spontaneous, and feasible in nature. Desorption experiments with 1 M HCl and 1 M HNO3 inferred the reusability of biomass. The results showed that SRs have excellent adsorption properties and thus can be used as an effective and low cost biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solution.  相似文献   

14.
Aim of this study is the determination of the Cr(VI) removal efficiency of treated pine sawdust and also to find out the thermodynamic and kinetic parameters of Cr(VI) removal process in batch systems. Sawdust has been treated with 1,5-disodium hydrogen phosphate before the adsorption experiments. The effects of initial concentration of Cr(VI) ion, temperature, amount of adsorbent and pH of the solution on adsorption have been investigated. Optimum conditions for adsorption were determined as T=40 degrees C, sawdust dose=4 g, pH 2, by using the results of these experiments and an additional set of experiments was performed under these optimum conditions in order to see the change in the adsorption efficiency. Removal of chromium ion was found as highly dependent on pH and initial Cr(VI) concentration of the solution. In order to find out thermodynamic and kinetic parameters equilibrium adsorption models were applied. Although experimental data confirm with both Langmuir and Freundlich isotherm models, they suit most on Langmuir isotherms. Adsorption rate constant was determined from Lagergren equation. Equilibrium constants, adsorption free energy, enthalpy and entropy change values were also determined. It was found that adsorption process follows first order kinetic and adsorption of Cr(VI) on sawdust has the spontaneous nature.  相似文献   

15.
The hexavalent chromium biosorption onto untreated and heat-, acid- and alkali-treated Lentinus sajor-caju mycelia were studied from aqueous solutions. The particles sizes of the fungal mycelia ranged from 100 to 200 microm. The effect of pH, temperature, biosorbent dose, initial concentration of chromium ions, contact time parameters were investigated in a batch system. Biosorption equilibrium was established in about 4 h. The surface charge density of the fungal preparations varied with pH, and the maximum absorption of chromium ions on the fungal preparations were obtained at pH 2.0. The biosorption of chromium ions by the tested fungal preparations increased as the initial concentration of chromium ions increased in the medium. The maximum biosorption capacities of the untreated and heat, HCl- and NaOH-treated fungal biomass were 0.363, 0.613, 0.478 and 0.513 mmol Cr6+ per gram of dry biomass, respectively. The correlation regression coefficients and the Langmuir constant values show that the biosorption process can be well defined by Langmuir equation. The chromium adsorption data were analysed using the first- and the second-order kinetic models. The first-order equation is the most appropriate equation to predict the biosorption capacities of all the fungal preparations. In addition, the polarity and surface energy of the untreated and all the modified biomass film preparations were determined by contact angle measurement. All the tested fungal biomass preparations could be regenerated using 0.1 M NaOH solution.  相似文献   

16.
Biosorption of Cr(VI) using native strains of cyanobacteria from metal contaminated soil in the premises of textile mill has been reported in this paper. Biosorption was studied as a function of pH (1-5), contact time (5-180 min) and initial chromium ion concentration (5-20mg/l) to find out the maximum biosorption capacity of alginate immobilized Nostoc calcicola HH-12 and Chroococcus sp. HH-11. The optimum conditions for Cr(VI) biosorption are almost same for the two strains (pH 3-4, contact time 30 min and initial chromium concentration of 20mg/l) however, the biomass of Chroococcus sp. HH-11 was found to be more suitable for the development of an efficient biosorbent for the removal of Cr(VI) from wastewater, as it showed higher values of q(m) and K(f), the Langmuir and Freundlich isotherm parameters. Both the isotherm models were suitable for describing the biosorption of Cr(VI) by the cyanobacterial biosorbents.  相似文献   

17.
A carbon rich adsorbent prepared from the reaction of sugar beet pulp with sulphuric acid and gas formed during carbonization process have been studied for Cr(VI) removal from aqueous solutions. The SO(2) rich gas was shown to be an excellent Cr(VI) reductant. The equilibrium and kinetic studies were conducted by using the carbonaceous adsorbent derived from sugar beet pulp. The lower pH favoured Cr(VI) adsorption but substantial Cr(VI) reduction was observed. The Langmuir and Freundlich isotherm models were applied and the Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacity of chromium calculated from Langmuir isotherm is about 24 mgg(-1) for 25 degrees C. The adsorption of Cr(VI) is an endothermic process and follows the pseudo-second-order rate kinetics. The sulphuric acid-carbonization is an economical method for particularly chromium removal because the gas generated during carbonization exhibits good Cr(VI) reduction properties and carbonaceous material obtained is an efficient Cr(VI) adsorbent.  相似文献   

18.
The biosorption properties of copper(II) and zinc(II) onto a cone biomass of Pinus sylvestris L. was investigated by using batch techniques. The biosorption studies carried out with single metal solutions. The removal of copper(II) and zinc(II) from aqueous solution increased with pH and sharply decreased when pH of the solution was decreased. The maximum biosorption efficiency of P. sylvestris was 67% and 30% for Cu(II) and Zn(II), respectively. Batch kinetic and isotherm of biosorption metal ions were investigated. The second-order kinetic model was used to correlate the experimental data. The Freundlich and Langmuir model can describe the adsorption equilibrium of metal(II) on cone biomass. The biosorption constants were found from the Freundlich and Langmuir isotherms at 25 degrees C. It is found that the biosorption data of metals on cone biomass fitted both the Freundlich and Langmuir adsorption models.  相似文献   

19.
In this study, the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto inactive Saccharomyces cerevisiae was investigated as a function of initial pH, initial metal ion concentration and temperature. The Langmuir model was applied to experimental equilibrium data of Pb(II), Ni(II) and Cr(VI) biosorption depending on temperature and the maximum metal ions uptake at optimum biosorption temperature of 25 °C, were found to be 270.3, 46.3 and 32.6 mg g−1, respectively. Using the Langmuir constant, b values obtained at different temperatures, the biosorption heats of Pb(II), Ni(II) and Cr(VI) were determined as −1.125, −1.912 and −2.89 kcal mol−1, respectively. The results indicated that the biosorption of Pb(II), Ni(II) and Cr(VI) ions to S. cerevisiae is by the physical adsorption and has an exothermic nature.  相似文献   

20.
This study focused on the biosorption of total chromium onto red algae (Ceramium virgatum) biomass from aqueous solution. Experimental parameters affecting biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of C. virgatum biomass for total chromium was found to be 26.5 mg/g at pH 1.5 and 10 g/L biomass dosage, 90 min equilibrium time and 20 °C. From the D–R isotherm model, the mean free energy was calculated as 9.7 kJ/mol, indicating that the biosorption of total chromium was taken place by chemisorption. The calculated thermodynamic parameters (ΔG°, ΔH°and ΔS°) showed that the biosorption of total chromium onto C. virgatum biomass was feasible, spontaneous and exothermic at 20–50 °C. Kinetic evaluation of experimental data showed that the biosorption processes of total chromium followed well pseudo-second-order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号