首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The action of mibefradil was studied on wild type class A calcium (Ca2+) channels and various class A/L-type channel chimaeras expressed in Xenopus oocytes. The mechanism of Ca2+ channel block by mibefradil was evaluated with two microelectrode voltage clamp. 2. Resting-state dependent block (or initial block) of barium currents (IBa) through class A Ca2+ channels was concentration dependent with an IC50 value of 208+/-23 microM. 3. Mibefradil (50 microM) did not significantly affect the midpoint voltage of the steady-state inactivation curve suggesting that inactivation does not promote Ca2+ channel block. Chimaeric class A/L-type Ca2+ channels inactivating with faster or slower kinetics than wild type class A channels were equally well inhibited by mibefradil as wild type class A channels. 4. Frequent Ca2+ channel activation facilitated IBa inhibition by mibefradil (use-dependent block). Recovery from use-dependent block was voltage-dependent, being slower at depolarized membrane potentials (tau = 75+/-15 s at -70 mV, (n=6) vs tau = 20+/-2 s at -100 mV, (n=6), P<0.05). 5. We suggest that use-dependent block of class A Ca2+ channels by mibefradil occurs because of slow recovery from open channel block (SROB) and not because of drug binding to inactivated channels. 6. Voltage-dependent slow recovery from open state-dependent block provides a molecular basis for understanding the cardiovascular profile of mibefradil such as selectivity for vasculature and relative lack of negative inotropic effects.  相似文献   

2.
1. We have studied the effects of mibefradil, a novel calcium antagonist, on the resting potential and ion channel activity of macrovascular endothelial cells (calf pulmonary artery endothelial cells, CPAE). The patch clamp technique was used to measure ionic currents and the Fura-II microfluorescence technique to monitor changes in the intracellular Ca2+ concentration, [Ca2+]i. 2. Mibefradil (10 microM) hyperpolarized the membrane potential of CPAE cells from its mean control value of -26.6 +/- 0.6 mV (n = 7) to -59.8 +/- 1.7 mV (n = 6). A depolarizing effect was observed at higher concentrations (-13.7 +/- 0.6 mV, n = 4, 30 microM mibefradil). 3. Mibefradil inhibited Ca(2+)-activated Cl- currents, ICl,Ca, activated by loading CPAE cells via the patch pipette with 500 nM free Ca2+ (Ki = 4.7 +/- 0.18 microM, n = 8). 4. Mibefradil also inhibited volume-sensitive Cl- currents, ICl,vol, activated by challenging CPAE cells with a 27% hypotonic solution (Ki = 5.4 +/- 0.22 microM, n = 6). 5. The inwardly rectifying K+ channel, IRK, was not affected by mibefradil at concentrations up to 30 microM. 6. Ca2+ entry activated by store depletion, as assessed by the rate of [Ca2+]i-increase upon reapplication of 10 mM extracellular Ca2+ to store-depleted cells, was inhibited by 17.6 +/- 6.5% (n = 8) in the presence of 10 microM mibefradil. 7. Mibefradil inhibited proliferation of CPAE cells. Half-maximal inhibition was found at 1.7 +/- 0.12 microM (n = 3), which is similar to the concentration for half-maximal block of Cl- channels. 8. These actions of mibefradil on Cl- channels and the concomitant changes in resting potential might, in addition to its effect on T-type Ca2+ channels, be an important target for modulation of cardiovascular function under normal and pathological conditions.  相似文献   

3.
Ca2+ channels diversity of cultured rat embryo motoneurons was investigated with whole-cell current recordings. In 5-20 mM Ba2+, the whole-cell currents were separated in low- (LVA) and high-voltage-activated (HVA) current. The LVA current was evident since the first day in culture, while the HVA component was small and increased with time. Recordings after 4 days revealed approximately 20% L-, approximately 45% N- and approximately 35% P- and R-type currents. P-type currents were revealed only in 40% of motoneurons, in which 20-200 nM omega-Aga-IVA caused 20% irreversible block of total current. The remaining 60% of cells were insensitive even to higher doses of the toxin (500 nM in 5 mM Ba2+), suggesting weak expression and heterogeneous distribution of P-type channels compensated by high densities of HVA Ca2+ channels resistant to all the antagonists (R-type). A significant residual current could also be resolved after prolonged applications of 5 microM omega-CTx-MVIIC, which allowed separation of N- and P-type currents by the distinct onset of toxin block. The antagonists-resistant current reveals biophysical characteristics typical of HVA channels, but distinct from the alphaE channel. The current activates around -20 mV in 20 mM Ba2+; inactivates slowly and independently of Ca2+; is blocked by low [Cd2+] and high [Ni2+]; and is larger with Ba2+ than Ca2+. The uncovered R-type calcium current can account for part of the presynaptic Ca2+ current controlling neurotransmitter release at the mammalian neuromuscular junction whose activity is resistant to DHP-and omega-CTx-GVIA, and displays anomalous sensitivity to omega-Aga-IVA and omega-CTx-MVIIC.  相似文献   

4.
1. The effects of diltiazem on various functional parameters were studied in bovine cultured adrenal chromaffin cells stimulated with the nicotinic receptor agonist dimethylphenylpiperazinium (DMPP) or with depolarizing Krebs-HEPES solutions containing high K+ concentrations. 2. The release of [3H]-noradrenaline induced by DMPP (100 microM for 5 min) was gradually and fully inhibited by increasing concentrations of diltiazem (IC50 = 1.3 microM). In contrast, the highest concentration of diltiazem used (10 microM) inhibited the response to high K+ (59 mM for 5 min) by only 25%. 3. 45Ca2+ uptake into cells stimulated with DMPP (100 microM for 1 min) was also blocked by diltiazem in a concentration-dependent manner (IC50 = 0.4 microM). Again, diltiazem blocked the K(+)-evoked 45Ca2+ uptake (70 mM K+ for 1 min) only by 20%. In contrast, the N-P-Q-type Ca2+ channel blocker omega-conotoxin MVIIC depressed the K+ signal by 70%. In the presence of this toxin, diltiazem exhibited an additional small inhibitory effect, indicating that the compound was acting on L-type Ca2+ channels. 4. Whole-cell Ba2+ currents through Ca2+ channels in voltage-clamped chromaffin cells were inhibited by 3-10 microM diltiazem by 20-25%. The inhibition was readily reversed upon washout of the drug. 5. The whole-cell currents elicited by 100 microM DMPP (IDMPP) were inhibited in a concentration-dependent and reversible manner by diltiazem. Maximal effects were found at 10 microM, which reduced the peak IDMPP by 70%. The area of each curve represented by total current (QDMPP) was reduced more than the peak current. At 10 microM, the inhibition amounted to 80%; the IC50 for QDMPP inhibition was 0.73 microM, a figure close to the IC50 for 45Ca2+ uptake (0.4 microM) and [3H]-noradrenaline release (1.3 microM). The blocking effects of diltiazem developed very quickly and did not exhibit use-dependence; thus the drug blocked the channel in its closed state. The blocking effects of 1 microM diltiazem on IDMPP were similar at different holding potentials (inhibition by around 30% at -100, -80 or -50 mV). Diltiazem did not affect the current flow through voltage-dependent Na+ channels. 6. These data are compatible with the idea that diltiazem has little effect on Ca2+ entry through voltage-dependent Ca2+ channels in bovine chromaffin cells. Neither, does diltiazem affect INa. Rather, diltiazem acts directly on the neuronal nicotinic receptor ion channel and blocks ion fluxes, cell depolarization and the subsequent Ca2+ entry and catecholamine release. This novel effect of diltiazem might have clinical relevance since it might reduce the sympathoadrenal drive to the heart and blood vessels, thus contributing to the well established antihypertensive and cardioprotective effects of the drug.  相似文献   

5.
Mibefradil is a new cardiovascular drug with peculiar Ca++ antagonistic properties. The most remarkable feature of mibefradil is its unique relative selectivity for T type calcium channels, a property that has been proposed to explain in part the beneficial pharmacological and clinical profiles of this drug. In adrenal glomerulosa cells, aldosterone biosynthesis and secretion in response to angiotensin II or extracellular potassium is dependent on a sustained influx of Ca++ through T type Ca++ channels. The effect of mibefradil on the steroidogenic function of glomerulosa cells was therefore investigated. Using the patch clamp technique, we found that mibefradil inhibits selectively and in a concentration-dependent manner (IC50 = 3 microM)++ T type currents in bovine glomerulosa cells. In addition to this tonic (voltage independent) inhibition, the drug also induced a shift of the steady-state inactivation curve of these channels toward hyperpolarized voltages, contributing to its efficacy to prevent Ca++ influx into the cell through T type channels. Concomitantly, mibefradil reduced the cytosolic calcium responses to potassium and angiotensin II (as assessed with fluorescent probes), without affecting the capacitative Ca++ influx, and inhibited pregnenolone and aldosterone formation. This inhibition of steroidogenesis was not exclusively due to mibefradil action on voltage-operated Ca++ channels, because this agent also partially reduced steroid synthesis induced by adrenocorticotropic hormone or forskolin, two activators of the cyclic AMP pathway. In conclusion, mibefradil is highly effective in adrenal glomerulosa cells in reducing T type channel activity and aldosterone biosynthesis, two actions that should contribute to the beneficial effect of the drug in the treatment of hypertension.  相似文献   

6.
Whole cell recordings were performed on acutely dissociated neurons from the horizontal limb of the diagonal band of Broca (hDBB) from rats to elucidate the ionic mechanisms of action of neurotensin. Neurotensin caused a decrease in whole cell voltage-activated outward currents and failed to elicit a response when Ca2+ influx was blocked by changing the external solution to the one containing 0 mM Ca2+ and 50 microM Cd2+, suggesting the involvement of Ca2+-dependent conductances. Charybdotoxin, a specific blocker of voltage-sensitive calcium-activated K+ channels (IC), caused a decrease in outward currents comparable with that caused by blocking calcium influx and occluded the neurotensin-induced decrease in outward currents. Similarly, 50 microM tetraethylammonium ions also blocked the neurotensin response. Also neurotensin reduced whole cell barium currents (IBa) and calcium currents (ICa). Amiloride and omega-conotoxin GVIA, but not nimodipine, were able to eliminate the neurotensin-induced decrease in IBa. Thus T- and N- but not L-type calcium channels are subject to modulation by neurotensin, and this may account for its effects on IC. The predicted changes in action potential as a result of the blockade of currents through calcium channels culminating into changes in IC were confirmed in the bridge current-clamp recordings. Specifically, neurotensin application led to depolarization of the resting membrane potential, broadening of spike and a decrease in afterhyperpolarization and accommodation. These alterations in action potential characteristics that resulted in increased firing rate and excitability of the hDBB neurons also were produced by application of charybdotoxin. Neurotensin effects on these properties were occluded by 2 - [(1 - 7 - chloro - 4 - quinolinyl) - 5 - (2, 6 - di - methoxyphenyl) pyrazol-3-yl) carbonylamino] tricyclo (3.3.1.1.)decan-2-carboxylic acid, a nonpeptide high-affinity neurotensin receptor antagonist. Neurotensin blockade of IC, possibly through ICa, is a potential physiological mechanism whereby this peptide may evoke alterations in the cortical arousal, sleep-wake cycle, and theta rhythm.  相似文献   

7.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o. The antagonist effects of ifenprodil 20 micro M on high-[K+]0-evoked rises in [Ca2+]. were attenuated by spermine 0.25 mM but not by putrescine 1 or 5 mM. In contrast,spermine 0.1 mM increased rises in [Ca2+]i evoked by NMDA and enhanced the ifenprodil (5 micro M) block of NMDA-evoked rises in [Ca2+]i.4. Similar results were obtained in mouse cultured hippocampal pyramidal neurones under whole-cell voltage-clamp. Ifenprodil attenuated both the peak and delayed whole-cell IB. with an IC% value of 18 +/- 2 micro M, whilst it attenuated steady-state NMDA-evoked currents with an IC50 of 0.8 +/- 0.2 micro M. Block of IBa by ifenprodil 10 JaM was rapid in onset, fully reversible and occurred without change in thecurrent-voltage characteristics of Ba. The ifenprodil block of IBa was enhanced on membrane depolarization and was weakly dependent on the frequency of current activation. Spermine 0.1 mM potentiated control NMDA-evoked currents but attenuated IB,. In agreement with the microspectrofluorimetric studies, co-application of spermine produced a small enhancement of the inhibitory effect of ifenprodil 10 micro M on NMDA-evoked responses whereas the reduction of I4 by ifenprodil 10 micro M in the presence of spermine was less than expected if the inhibitory effects of ifenprodil and spermine on IBa were simply additive.5. The results indicate that ifenprodil blocks high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Although the Ca2+ channel blocking actions of ifenprodil are observed at higher concentrations than those associated with NMDA antagonist activity, Ca2+ channel blockade may contribute, at least in part, to the established neuroprotective and anticonvulsant properties of the compound.  相似文献   

8.
The whole cell variant of the patch clamp technique was used to investigate the actions of two novel insect peptides on high voltage-activated Ca2+ currents in cultured dorsal root ganglion (DRG) neurones. The insect peptides (PMP-D2 and PMP-C) were isolated originally from insect brains and fat bodies, and have been found to have similar three-dimensional structures to the N-type Ca2+ channel inhibitor omega-conotoxin GVIA (omega-CgTx GVIA). High voltage-activated Ca2+ currents were activated from a holding potential of -90 mV by depolarizing step commands to 0 mV. Extracellular application of synthetic PMP-D2 or PMP-C (1 microM) attenuated high voltage-activated Ca2+ currents. The effects of PMP-C were strongly dependent on the frequency of current activation, but inhibition was apparent and reached a steady state after 20 steps when currents were evoked for 30 msec at 0.1 Hz. The actions of the two insect peptides overlapped both with each other and with omega-CgTx GVIA, suggesting that N-type Ca2+ current was predominantly sensitive to these peptides. Low voltage-activated T-type current and 1,4-dihydropyridine sensitive L-type Ca2+ currents were insensitive to 1 microM PMP-D2 and PMP-C, which indicates a degree of selectivity. The presence of a fucose group on PMP-C abolished the ability of this peptide to attenuate high voltage-activated Ca2+ currents, which may reflect a mechanism by which peptide function could be regulated in insects. The electrophysiological data are supported by studies on 45Ca2+ influx into rat cerebrocortical synaptosomes. Both PMP-D2 (10 microM), PMP-C (10 microM) and omega-CgTx GVIA (1 microM) attenuated a proportion of 45Ca2+ influx into the synaptosomes, but additive effects of these peptides were not observed. We conclude that these naturally occurring peptides obtained from invertebrate preparations have inhibitory effects on N-type Ca2+ channels. Although the peptides have related three-dimensional structures, they have distinct amino acid sequences and appear to have different mechanisms of action to produce inhibition of mammalian neuronal high voltage-activated Ca2+ channels.  相似文献   

9.
LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. J. Neurophysiol. 78: 2574-2581, 1997. A N-methyl--aspartate receptor (NMDAR)-independent long-term potentiation (LTP) has been investigated in the dentate gyrus of the hippocampus in vitro in the presence of the NMDAR antagonist, -2-amino-phosphonopentanoate (50-100 mu M), at a concentration that completely blocked NMDAR-mediated excitatory postsynaptic currents (EPSCs). LTP of patch-clamped EPSCs was induced by pairing low-frequency evoked EPSCs (1 Hz) with depolarizing voltage pulses designed to predominately open low-voltage-activated (LVA) Ca2+ channels. Voltage pulses alone induced only a short-term potentiation. The LTP was blocked by intracellular application of the rapid Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, demonstrating that a rise in intracellular Ca2+ is required for the NMDAR-independent LTP induction. The NMDAR-independent LTP induction also was blocked by Ni2+ at a low extracellular concentration (50 mu M), which is known to strongly block LVA Ca2+ channels. However, Ni2+ did not inhibit the NMDAR-dependent LTP induced by high-frequency stimulation (HFS). The NMDAR-independent LTP induction was not blocked by high concentrations of the L-type Ca2+ channel blocker nifedipine (10 mu M). The NMDAR-independent LTP was inhibited by the metabotropic glutamate receptor ligand (+)-alpha-methyl-4-carboxyphenylglycine. These experiments demonstrate the presence of a NMDAR-independent LTP induced by Ca2+ influx via Ni2+-sensitive, nifedipine-insensitive voltage-gated Ca2+ channels, probably LVA Ca2+ channels. Induction of the NMDAR-independent LTP was inhibited by prior induction of HFS-induced NMDAR-dependent LTP, demonstrating that although the NMDAR-dependent and NMDAR-independent LTP use a different Ca2+ channel for Ca2+ influx, they share a common intracellular pathway.  相似文献   

10.
1. Whole cell patch clamp techniques were used to study the effects of 4030W92 (2,4-diamino-5-(2,3-dichlorophenyl)-6-fluoromethylpyrimidine), a new antihyperalgesic agent, on rat dorsal root ganglion (DRG) neurones. 2. In small diameter, presumably nociceptive DRG neurones under voltage-clamp, 4030W92 (1-100 microM) produced a concentration-related inhibition of slow tetrodotoxin-resistant Na+ currents (TTXR). From a holding potential (Vh) of -90 mV, currents evoked by test pulses to 0 mV were inhibited by 4030W92 with a mean IC50 value of approximately 103 microM. 3. The inhibitory effect of 4030W92 on TTX(R) was both voltage- and use-dependent. Currents evoked from a Vh of -60 mV were inhibited by 4030W92 with a mean IC50 value of 22 microM, which was 5 fold less than the value obtained at -90 mV. Repeated activation of TTX(R) by a train of depolarizing pulses (5 Hz, 20 ms duration) enhanced the inhibitory effects of 4030W92. These data could be explained by a preferential interaction of the drug with inactivation states of the channel. In support of this hypothesis 4030W92 (30 microM) produced a significant hyperpolarizing shift of 10 mV in the slow inactivation curve for TTX(R) and markedly slowed the recovery from channel inactivation. 4. Fast TTX-sensitive Na+ currents (TTXs) were also inhibited by 4030W92 in a voltage-dependent manner. The IC50 values obtained from Vhs of -90 mV and -70 mV were 37 microM and 5 microM, respectively. 4030W92 (30 microM) produced a 13 mV hyperpolarizing shift in the steady-state inactivation curve of TTXs. 5. High threshold voltage-gated Ca2+ currents were only weakly inhibited by 4030W92. The reduction in peak Ca2+ current amplitude produced by 100 microM 4030W92 was 20+/-6% (n=6). Low threshold T-type Ca2+ currents were inhibited by 17+/-8% and 43+/-3% by concentrations of 4030W92 of 30 microM and 100 microM, respectively (n=6). 6. Under current clamp, some cells exhibited broad TTX-resistant action potentials whilst others showed fast TTX-sensitive action potentials in response to a depolarizing current injection. In most cells a long duration (800 ms) supramaximal current injection evoked a train of action potentials. 4030W92 (10-30 microM) had little effect on the first spike in the train but produced a concentration-related inhibition of the later spikes. The number of spikes per train was significantly reduced from 9.7+/-1.5 to 4.2+/-1.0 and 2.6+/-1.1 in the presence of 10 microM and 30 microM 4030W92, respectively (n=5). 7. Thus, 4030W92 is a potent voltage- and use-dependent inhibitor of Na+ channels in sensory neurones. This profile can be explained by a preferential action of the drug on a slow inactivation state of the channel that results in a delayed recovery to the resting state. This state-dependent modulation by 4030W92 of Na+ channels that are important in sensory neurone function may underlie or contribute to the antihyperalgesic profile of this compound observed in vivo.  相似文献   

11.
The effect of mibefradil, a new nondihydropyridine Ca2+ channel antagonist, was investigated on Y1 cells which exhibited T-and L-type Ca2+ currents. In the great majority of these cells, mibefradil rapidly and selectively blocked T-type Ca2+ current in a dose-dependent manner with a half maximum action at 10-7 M. Furthermore, the specific L-type Ca2+ channel inhibitor, nifedipine, blocked the Ca2+ inward current remaining after the action of mibefradil. Mibefradil does not modify the voltage-dependent characteristics of the current/voltage relationship. However, mibefradil is more effective at depolarized membrane potential.  相似文献   

12.
1. The effects of the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on the ionic currents of rat carotid body type I cells were investigated by use of whole-cell and outside-out patch clamp techniques. 2. NDGA (5-50 microM) produced a concentration-dependent inhibition of whole-cell K+ currents at all activating test potentials (holding potential -70 mV). The time-course of the inhibition was also concentration-dependent and the effects of NDGA were only reversible following brief periods of exposure (<2 min). Another lipoxygenase inhibitor, phenidone (5 microM), was without effect on whole-cell K+ currents in carotid body type I cells. 3. NDGA (5-50 microM) also inhibited whole-cell Ca2+ channel currents (recorded with Ba2+ as charge carrier) in a concentration-dependent manner. 4. Isolation of voltage-gated K+ channels by use of high [Mg2+] (6 mM), low [Ca2+] (0.1 mM) solutions revealed a direct inhibition of the voltage-sensitive component of the whole-cell K+ current by NDGA (50 microM). 5. In excised, outside-out patches NDGA (20-50 microM) increased large conductance, Ca2+ activated K+ channel activity approximately 10 fold, an effect which could be reversed by either tetraethylammonium (10 mM) or charybdotoxin (30 nM). 6. It is concluded that NDGA activates maxi-K+ channels in carotid body type I cells and over the same concentration range inhibits voltage-sensitive K+ and Ca2+ channels. The inhibition of whole cell K+ currents seen is most likely due to a combination of direct inhibition of the voltage-sensitive K+ current and indirect inhibition of maxi-K+ channel activity through blockade of Ca2+ channels.  相似文献   

13.
The effects of niflumic acid on whole-cell membrane currents and mechanical activity were examined in the rat portal vein. In freshly dispersed portal vein cells clamped at -60 mV in caesium (Cs+)-containing solutions, niflumic acid (1-100 microM) inhibited calcium (Ca2+)-activated chloride currents (IC1(Ca)) induced by caffeine (10 mM) and by noradrenaline (10 microM). In a potassium (K+)-containing solution and at a holding potential of - 10 mV, niflumic acid (10-100 microM) induced an outward K+ current (IK(ATP)) which was sensitive to glibenclamide (10-30 microM). At concentrations < 30 microM and at a holding potential of -2 mV, niflumic acid had no effect on the magnitude of the caffeine- or noradrenaline-stimulated current (IBK(Ca)) carried by the large conductance, Ca(2+)-sensitive K+ channel (BKCa). However, at a concentration of 100 microM, niflumic acid significantly inhibited IBK(Ca)) evoked by caffeine (10 mM) but not by NS1619 (1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoromethyl-2(3 H) benzimidazolone; 20 microM). In Cs(+)-containing solutions, niflumic acid (10-100 microM) did not inhibit voltage-sensitive Ca2+ currents. In intact portal veins, niflumic acid (1-300 microM) inhibited spontaneous mechanical activity, an action which was partially antagonised by glibenclamide (1-10 microM), and contractions produced by noradrenaline (10 microM), an effect which was glibenclamide-insensitive. It is concluded that inhibition of ICl(Ca) and stimulation of IK(ATP) both contribute to the mechano-inhibitory actions of niflumic acid in the rat portal vein.  相似文献   

14.
Pharmacological modulation of human sodium current was examined in Xenopus oocytes expressing human heart Na+ channels. Na+ currents activated near -50 mV with maximum current amplitudes observed at -20 mV. Steady-state inactivation was characterized by a V1/2 value of -57 +/- 0.5 mV and a slope factor (k) of 7.3 +/- 0.3 mV. Sodium currents were blocked by tetrodotoxin with an IC50 value of 1.8 microM. These properties are consistent with those of Na+ channels expressed in mammalian myocardial cells. We have investigated the effects of several pharmacological agents which, with the exception of lidocaine, have not been characterized against cRNA-derived Na+ channels expressed in Xenopus oocytes. Lidocaine, quinidine and flecainide blocked resting Na+ channels with IC50 values of 521 microM, 198 microM, and 41 microM, respectively. Use-dependent block was also observed for all three agents, but concentrations necessary to induce block were higher than expected for quinidine and flecainide. This may reflect differences arising due to expression in the Xenopus oocyte system or could be a true difference in the interaction between human cardiac Na+ channels and these drugs compared to other mammalian Na+ channels. Importantly, however, this result would not have been predicted based upon previous studies of mammalian cardiac Na+ channels. The effects of DPI 201-106, RWJ 24517, and BDF 9148 were also tested and all three agents slowed and/or removed Na+ current inactivation, reduced peak current amplitudes, and induced use-dependent block. These data suggest that the alpha-subunit is the site of interaction between cardiac Na+ channels and Class I antiarrhythmic drugs as well as inactivation modifiers such as DPI 201-106.  相似文献   

15.
A number of steroids seem to have anesthetic effects resulting primarily from their ability to potentiate currents gated by gamma-aminobutyric acidA (GABAA) receptor activation. One such compound is (3alpha,5alpha, 17beta)-3-hydroxyandrostane-17-carbonitrile [(+)-ACN]. We were interested in whether carbonitrile substitution at other ring positions might result in other pharmacological consequences. Here we examine effects of (3beta,5alpha, 17beta)-17-hydroxyestrane-3-carbonitrile [(+)-ECN] on GABAA receptors and Ca2+ channels. In contrast to (+)-ACN, (+)-ECN does not potentiate GABAA-receptor activated currents, nor does it directly gate GABAA-receptor mediated currents. However, both steroids produce an enantioselective reduction of T-type current. (+)-ECN blocked T current with an IC50 value of 0.3 microM with a maximal block of 41%. (+)-ACN produced a partial block of T current (44% maximal block) with an IC50 value of 0.4 microM. Block of T current showed mild use- and voltage-dependence. The (-)-ECN enantiomer was about 33 times less potent than (+)-ECN, with an IC50 value of 10 microM and an amount of maximal block comparable to (+)-ECN. (+)-ECN was less effective at blocking high-voltage-activated Ca2+ current in DRG neurons (IC50 value of 9. 3 microM with maximal block of about 27%) and hippocampal neurons. (+)-ECN (10 microM) had minimal effects on voltage-gated sodium and potassium currents in rat chromaffin cells. The results identify a steroid with no effects on GABAA receptors that produces a partial inhibition of T-type Ca2+ current with reasonably high affinity and selectivity. Further study of steroid actions on T currents may lead to even more selective and potent agents.  相似文献   

16.
Human N-type Ca2+ channels were rapidly and reversibly inhibited by 5-100 microM BW619C89 (IC50 = 16.4 microM at Vtest = + 10 mV and Vhold = - 90 mV). In the presence of 20 microM BW619C89, activation kinetics were significantly faster. The degree of inhibition observed was affected by both test and holding potential, indicating state-dependent interactions with the N-type Ca2+ channel.  相似文献   

17.
Many neurons of spinal laminae I and II, a region concerned with pain and other somatosensory mechanisms, display frequent miniature "spontaneous" EPSCs (mEPSCs). In a number of instances, mEPSCs occur often enough to influence neuronal excitability. To compare generation of mEPSCs to EPSCs evoked by dorsal root stimulation (DR-EPSCs), various agents affecting neuronal activity and Ca2+ channels were applied to in vitro slice preparations of rodent spinal cord during tight-seal, whole-cell, voltage-clamp recordings from laminae I and II neurons. The AMPA/kainate glutamate receptor antagonist CNQX (10-20 microM) regularly abolished DR-EPSCs. In many neurons CNQX also eliminated mEPSCs; however, in a number of cases a proportion of the mEPSCs were resistant to CNQX suggesting that in these instances different mediators or receptors were also involved. Cd2+ (10-50 microM) blocked evoked EPSCs without suppressing mEPSC occurrence. In contrast, Ni2+ (相似文献   

18.
Dihydropyridines and verapamil are widely used as blockers of voltage-dependent Ca++ channels. In this work we show that these compounds can have a direct blocking action on a class of voltage-activated potassium channels. Voltage-dependent whole-cell currents were recorded from isolated guinea-pig outer hair cells (OHCs) under conditions such that the free Ca++ concentration in both the internal and external solutions was minimized. A substantial Ca(++)-independent K+ current was revealed by this procedure. Both conventional K+ and Ca++ channel ligands inhibited this current. The order of potency (in terms of the half inhibitory concentrations (IC50) of channel inhibitors) was: nimodipine (6 microM) > Bay K 8644 (8 microM) > verapamil (11 microM) > 4-aminopyridine (22 microM) > nifedipine (32 microM) > quinine (49 microM) > TEA (10236 microM). Except for verapamil, these channel ligands reduced the size of the K+ currents without much alteration of the time course of the currents. In contrast, verapamil caused a more than 10-fold increase in the apparent inactivation rate of the K+ currents without significantly altering the activation of the currents. The observation that relatively low concentrations of calcium channel ligands can directly inhibit potassium currents in isolated OHCs indicates that caution should be taken when these pharmacological agents are used as tools for studying cochlear hair cell physiology.  相似文献   

19.
Voltage-gated calcium channels can be classified into high voltage activated (HVA) and low voltage activated (LVA or T-type) subtypes. The molecular diversity of HVA channels primarily results from different genes encoding their pore-forming alpha1 subunits. These channels share a common structure with an alpha1 subunit associated with at least two regulatory subunits (beta, alpha2-delta). Any of the six alpha1-related channels identified to date are regulated in their functional properties through an interaction with the ancillary beta-subunit. By contrast, the diversity and the molecular identity of LVA or T-type calcium channels have yet to be defined. Whether LVA channels are modulated by a beta-subunit, like HVA channels, is unknown. To address this issue, we have used an antisense strategy to inhibit beta-subunit expression in the NG 108-15 neuroblastoma cell line. Differentiated NG 108-15 cells express both LVA and HVA channels. We found that LVA currents were unaffected when cells were incubated with beta-antisense, while HVA currents were drastically decreased. Since LVA Ca channel currents in NG 108-15 cells are not regulated by beta-subunits, it is reasonable to postulate that the pore-forming subunit(s) of these channels lacks an interaction domain with a beta-subunit (AID). This molecular feature, which is common to various T-type channels, indicates further that LVA calcium channels belong to a channel family structurally distant from HVA channels.  相似文献   

20.
Modulation of high-voltage-activated Ca2+ channels by muscarinic receptor agonists was investigated in isolated parasympathetic neurons of neonatal rat intracardiac ganglia using the amphotericin B perforated-patch whole cell recording configuration of the patch-clamp technique. Focal application of the muscarinic agonists acetylcholine (ACh), muscarine, and oxotremorine-M to the voltage-clamped soma membrane reversibly depressed peak Ca2+ channel current amplitude. The dose-response relationship obtained for ACh-induced inhibition of Ba2+ current (IBa) exhibited a half-maximal inhibition at 6 nM. Maximal inhibition of IBa amplitude obtained with 100 microM ACh was approximately 75% compared with control at +10 mV. Muscarinic agonist-induced attenuation of Ca2+ channel currents was inhibited by the muscarinic receptor antagonists pirenzepine (/=30% at +90 mV in the presence of ACh, indicating a voltage-independent component to the muscarinic receptor-mediated inhibition. Both dihydropyridine- and omega-conotoxin GVIA-sensitive and -insensitive Ca2+ channels were inhibited by ACh, suggesting that the M4 muscarinic receptor is coupled to multiple Ca2+ channel subtypes in these neurons. Inhibition of IBa amplitude by muscarinic agonists was also observed after cell dialysis using the conventional whole cell recording configuration. However, internal perfusion of the cell with 100 microM guanosine 5'-O-(2-thiodiphosphate) trilithium salt (GDP-beta-S) or incubation of the neurons in Pertussis toxin (PTX) abolished the modulation of IBa by muscarinic receptor agonists, suggesting the involvement of a PTX-sensitive G-protein in the signal transduction pathway. Given that ACh is the principal neurotransmitter mediating vagal innervation of the heart, the presence of this inhibitory mechanism in postganglionic intracardiac neurons suggests that it may serve for negative feedback regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号