首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 32P-post-labelling assay for DNA adduct quantification gives the opportunity to examine endogenous exposure to DNA reactive compounds. Most human biomonitoring studies applied white blood cells (WBC) or cells obtained by broncho-alveolar lavages (BAL) as source of DNA, but still it is not clear what cell type represents the most reliable indicator for exposure to cigarette smoke-associated genotoxins. At first, we examined DNA adduct levels by means of nuclease P1 (NP1) enriched 32P-post-labelling in separated WBC subpopulations after in vitro incubations for 18 h with 10 microM benzo[a]pyrene (B[a]P). DNA adduct levels were highest in monocytes (10.7 +/- 2.9 adducts/10(8) nucleotides, n = 8), followed by lymphocytes (5.9 +/- 1.7, n = 8), and granulocytes (0.5 +/- 0.2, n = 8). Secondly, aromatic-DNA adduct levels were determined in BAL cells and WBC-subsets from (non-)smoking volunteers. In smoking individuals, adduct levels were in the ranking order: BAL cells (3.7 +/- 1.0, n = 5) > monocytes (2.0 +/- 0.5, n = 8) > or = lymphocytes (1.6 +/- 0.4, n = 8) > granulocytes (0.8 +/- 0.2, n = 8) by NP1-enrichment and monocytes (9.0 +/- 3.2, n = 5) > or = lymphocytes (8.0 +/- 2.1, n = 6) > granulocytes (2.1 +/- 0.3, n = 7) by butanol-enriched 32P-post-labelling. Aromatic-DNA adduct levels were significantly higher in WBC-subsets of smokers as compared with non-smokers, except for DNA adducts in granulocytes using butanol enrichment. Thirdly, dose-response relationships were investigated in mononuclear white blood cells (MNC, i.e. monocytes plus lymphocytes) and BAL-cells of a larger group of smoking individuals (n = 78). Adduct levels in MNC were related to daily exposure to cigarette-tar (r = 0.31, P < 0.01). Adduct levels in BAL cells seemed to be correlated with pack-years, but after correction for age this relationship was lost. Butanol extraction resulted in 5-6-fold higher DNA adduct levels in MNC, whereas butanol extraction of BAL-DNA of the same individuals yielded only 2-fold higher adduct levels. The two enrichment procedures of 32P-post-labelling were correlated in BAL cells (r = 0.86, P < 0.001, n = 12). We conclude that particularly MNC are good surrogates for the detection of smoking-related DNA adducts.  相似文献   

2.
The CYP1A1, CYP2D6 and GSTM1 genes encode biotransforming enzymes involved in activation and detoxification of xenobiotics. Metabolically activated chemical compounds may interact with DNA and form adducts. In this study, the effect of the GSTM1, CYP1A1 exon 7 and CYP2D6 polymorphisms on DNA adduct levels was studied in 170 healthy volunteers. DNA adducts levels were measured by 32P-postlabelling in mononuclear white blood cells (WBC, lymphocytes and monocytes) and granulocytes collected in summer and winter. The influence of the genotype on the level of DNA adducts in both types of WBCs was observed only in summer samples. Individuals with GSTM1 deficient (null) genotype had significantly elevated level of adducts in mononuclear WBCs (p = 0.045) and granulocytes (p = 0.031) compared to GSTM1 positives. Higher adduct levels in carriers of combined GSTM1(null)/CYP1A1-Ile/Val genotype were found in both types of WBCs when compared to GSTM1(+)/CYP1A1-Ile/Ile genotype carriers (p = 0.046 in granulocytes, p = 0.092 in mononuclear WBCs). CYP2D6 wild-type homozygotes (EMs) and heterozygotes (HEMs) were shown to have significantly higher mononuclear WBC DNA adduct levels than mutant homozygotes (PMs) (p = 0.037 and p = 0.014). When confounding factors associated with PAH exposure were taken into account a statistically significant effect of CYP1A1 exon 7 polymorphism on DNA adduct levels was found (p = 0.012 in mononuclear WBCs, p = 0.043 in granulocytes). In a subgroup of current smokers (n = 95) high DNA adduct levels in granulocytes were associated with GSTM1(null) genotype, and increased adduct levels in mononuclear WBCs correlated with CYP2D6 EM and HEM genotypes. In winter samples the association between the genotype and DNA adduct levels was not observed.  相似文献   

3.
Wildland (forest) firefighters are exposed to a wide range of carcinogenic polycyclic aromatic hydrocarbons (PAH) in forest fire smoke. PAH undergo metabolic activation and can subsequently bind to DNA. In this study, we investigated the association between occupational and dietary PAH exposures and the formation of WBC PAH-DNA adducts in a population of wildland firefighters. An enzyme-linked immunosorbent assay using an antiserum elicited against benzo(a)pyrene-modified DNA was used to measure PAH-DNA adducts in WBC obtained from 47 California firefighters at two time points, early and late in the 1988 forest fire season. PAH-DNA adduct levels were not associated with cumulative hours of recent firefighting activity. However, firefighters who consumed charbroiled food within the previous week had elevated PAH-DNA adduct levels, which were related to frequency of charbroiled food intake. These findings suggest that dietary sources of PAH contribute to PAH-DNA adduct levels in peripheral WBC and should be evaluated when using this assay to assess occupational and environmental PAH exposure.  相似文献   

4.
The metabolic activation in mouse skin of benzo[g]chrysene (B[g]C), a moderately carcinogenic polycyclic aromatic hydrocarbon (PAH) present in coal tar, was investigated. Male Parkes mice were treated topically with 0.5 micromol B[g]C and DNA was isolated from the treated areas of skin at various times after treatment and analysed by 32P-post-labelling. Seven major adduct spots were detected, at a maximum level of 6.55 fmol adducts/microg DNA. Mouse skin treated with the PAH benzo[c]phenanthrene (B[c]Ph) gave a total of 0.24 fmol adducts/microg DNA. B[g]C-DNA adducts persisted in skin for at least 3 weeks. Treatment of mice with 0.5 micromol of the optically pure putative proximate carcinogens, the (+)- and (-)-trans benzo[g]chrysene-11,12-dihydrodiols, led to the formation of adducts which comigrated on TLC and HPLC with those formed in B[g]C-treated mice, which suggested that the detected adducts were formed by the fjord region B[g]C-11,12-dihydrodiol-13,14-epoxides (B[g]CDEs). To test this, the four optically pure synthetic B[g]CDEs were reacted in vitro with DNA and the heteroco-polymers poly(dA x dT) and poly(dG x dC) and these samples 32P-postlabelled. Co-chromatography, on both TLC and HPLC, of in vitro and in vivo adducts indicated that B[g]C is activated in mouse skin through formation of the (-)-anti-(11R,12S,l3S,14R) and (+)-syn-(11S,12R,13S,14R) B[g]CDEs. (-)-anti-B[g]CDE formed five adducts with DNA, two of them with adenine and three with guanine bases. (+)-syn-B[g]CDE formed one adduct with each of these bases in DNA. The adenine adducts accounted for 64% of the total major adducts formed in B[g]C-treated mouse skin. The route of metabolic activation or B[g]C is similar to that reported for B[c]Ph, but the extent of activation to the fjord region diol-epoxides is significantly greater in the case of B[g]C, as demonstrated by the higher levels of adduct formation in vivo.  相似文献   

5.
32P-postlabelling analysis for detecting DNA adducts formed by polycyclic aromatic compounds is one of the most widely used techniques for assessing genotoxicity associated with these compounds. In cases where the formation of adducts is extremely low, a crucial step in the analysis is an enrichment procedure for adducts prior to the radiolabelling step. The nuclease P1 enhancement procedure is the most established and frequently used of these methods. An immunoaffinity procedure developed for class specific recognition for polycyclic aromatic hydrocarbon (PAH)-DNA adducts has therefore been compared with the nuclease P1 method for a range of DNA adducts formed by PAHs. The evaluation was carried out with skin DNA from mice treated topically with benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 5-methylchrysene or chrysene. The immobilised antibody had the highest affinity for adducts structurally similar to the BPDE-I-deoxyguanosine adduct ([+/-]-N2-(7r,8t,9r-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-1 0t-yl)-2'-deoxyguanosine) against which the antibody had been raised. Of the PAH-modified DNAs evaluated, the maximum adduct recovery was obtained for DNA containing the BPDE I-deoxyguanosine adduct. With DMBA-modified DNA, the profiles of adducts recovered from the column were similar when the column material was treated either with a digest of DMBA-modified DNA or with 32P-labelled DMBA adducts. I-compounds (endogenous adducts in tissue DNA of unexposed animals), which had similar chromatographic properties to PAH-DNA adducts, were not enriched by the immunoaffinity procedure. Compared to the simple nuclease P1 enhancement procedure, the immunoaffinity methods were lengthier and more labour intensive. Advantages of the immunoaffinity procedure include: specificity, allowing the selective detection of a certain class of adducts: efficient adduct enrichment, providing a viable alternative to other enrichment procedures; adequate sensitivity for model studies and the potential to purify adducts for further characterisation. However, as a general screen for detecting the formation of DNA adducts, the nuclease P1 procedure was viewed as the initial method of choice since it was capable of detecting a wider range of PAH-DNA adducts.  相似文献   

6.
This paper reports expanded analyses of benzo[a]pyrene (BP)-DNA adducts formed in vitro by activation with horseradish peroxidase (HRP) or 3-methylcholanthrene-induced rat liver microsomes and in vivo in mouse skin. The adducts formed by BP are compared to those formed by BP-7,8-dihydrodiol and anti-BP diol epoxide (BPDE). First, activation of BP by HRP produced 61% depurinating adducts: 7-(benzo[a]pyrene-6-yl)guanine (BP-6-N7Gua), BP-6-C8Gua, BP-6-N7Ade, and the newly identified BP-6-N3Ade. As a standard, the last adduct was synthesized along with BP-6-N1Ade by electrochemical oxidation of BP in the presence of adenine. Second, identification and quantitation of BP-DNA adducts formed by microsomal activation of BP showed 68% depurinating adducts: BP-6-N7Ade, BP-6-N7Gua, BP-6-C8Gua, BPDE-10-N7Ade, and the newly detected BPDE-10-N7Gua. The stable adducts were mostly BPDE-10-N2dG (26%), with 6% unidentified. BPDE-10-N7Ade and BPDE-10-N7Gua were the depurinating adducts identified after microsomal activation of BP-7, 8-dihydrodiol or direct reaction of anti-BPDE with DNA. In both cases, the predominant adduct was BPDE-10-N2dG (90% and 96%, respectively). Third, when mouse skin was treated with BP for 4 h, 71% of the total adducts were the depurinating adducts BP-6-N7Gua, BP-6-C8Gua, BP-6-N7Ade, and small amounts of BPDE-10-N7Ade and BPDE-10-N7Gua. These newly detected depurinating diol epoxide adducts were found in larger amounts when mouse skin was treated with BP-7,8-dihydrodiol or anti-BPDE. The stable adduct BPDE-10-N2dG was predominant, especially with anti-BPDE. Comparison of the profiles of DNA adducts formed by BP, BP-7,8-dihydrodiol, and anti-BPDE with their carcinogenic potency indicates that tumor initiation correlates with the levels of depurinating adducts, but not with stable adducts. Furthermore, the levels of depurinating adducts of BP correlate with mutations in the Harvey-ras oncogene in DNA isolated from mouse skin papillomas initiated by this compound [Chakravarti et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 10422-10426]. The depurinating adducts formed by BP in mouse skin appear to be the key adducts leading to tumor initiation.  相似文献   

7.
The DNA adduct 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been widely used as a biomarker for oxidative stress. Bulky DNA adducts, which are detectable by the 32P-postlabelling method, provide evidence for exposure to and metabolic activation of large, mainly apolar compounds, e.g. polycyclic aromatic hydrocarbons. We determined both types of adducts in placental tissues of 30 term pregnancies and related the adduct levels to the exposure to tobacco smoke and the plasma antioxidant status. Urine and plasma continine concentrations were used to select 10 nonsmokers, 9 nonsmokers exposed to environmental tobacco smoke (ETS) and 11 smoking women. Placental levels of 8-OHdG were 0.84 +/- 0.11, 0.90 +/- 0.21 and 0.83 +/- 0.20/10(5) deoxyguanosine bases (dG) for nonsmokers, nonsmokers exposed to ETS and smokers, respectively. The differences between the groups were not significant. Smoking women had significantly lower plasma vitamin C and beta-carotene concentrations than nonsmoking women or nonsmoking women exposed to environmental tobacco smoke. The 8-OHdG adduct level in placental DNA was inversely correlated with the plasma vitamin E concentration (r = -0.47, P < 0.05). There was no association between placental 8-OHdG adducts and vitamin A, C and beta-carotene in plasma. In total, 15 different adducts could be identified in the 30 placenta samples by the 32P-postlabelling method. There was a strong inter-individual variation in both the number of adducts and adduct intensities. No smoking-related or vitamin-related effects on adduct patterns or intensities were found. Our findings suggests that, within the limits of the methods used, tobacco smoke exposure during pregnancy does not lead to a measurable increase in placental DNA adduct levels and that vitamin E appears to have a protective effect on placental 8-OHdG formation.  相似文献   

8.
The present study investigated the effects of dietary oltipraz on cigarette smoke-related lipophilic DNA adduct formation. Female Sprague-Dawley rats were exposed daily to sidestream cigarette smoke in a whole-body exposure chamber 6 h/day for 4 consecutive weeks. One group of rats was maintained on control diet while another group received the same diet supplemented with either a low (167 p.p.m.) or high (500 p.p.m.) dose of oltipraz, starting 1 week prior to initiation of smoke exposure until the end of the experiment. Analysis of lipophilic DNA adducts by the nuclease P1-mediated 32P-post-labeling showed up to five smoke-related adducts. Adduct no. 5 predominated in both the lung and the heart while adduct nos 3 and 2 predominated in the trachea and bladder, respectively. Quantitative analysis revealed that the total adduct level was the highest in lungs (270+/-68 adducts/10(10) nucleotides), followed by trachea (196+/-48 adducts/10(10) nucleotides), heart (141+/-22 adducts/10(10) nucleotides) and bladder (85+/-16 adducts/10(10) nucleotides). High dose oltipraz treatment reduced the adduct levels in lungs and bladder by >60%, while the reduction in lungs in the low-dose group was approximately 35%. In trachea, the effect of low and high dietary oltipraz on smoke DNA adduction was equivocal, while smoke-related DNA adducts in the heart were minimally inhibited by high-dose oltipraz. In a repeat experiment that employed a 3-fold lower dose of cigarette smoke, oltipraz (500 p.p.m.) was found to inhibit the formation of DNA adducts in rat lungs and trachea by 80 and 65%, respectively. These data clearly demonstrate a high efficacy of oltipraz in inhibiting the formation of cigarette smoke-induced DNA adducts in the target tissues.  相似文献   

9.
A method is described for the assay of the major malondialdehyde-deoxyguanosine adduct (M1G) based on immunoaffinity purification and gas chromatography/electron capture/negative chemical ionization/mass spectrometry. A stable isotope of M1G-deoxyribose ([2H2]M1G-dR) was used as an internal standard. Recovery of internal standard throughout the entire assay procedure was approximately 40%. The assay showed a linear response over a range of 10-1000 pg of M1G-dR and was verified by analysis of a synthetic. M1G-containing oligomer. The limit of detection in biological samples was 100 fmol/sample, corresponding to 3 adducts/10(8) bases for 1 mg of DNA. DNA was isolated from the blood of 10 healthy human donors, and M1G levels were measured. A mean value of 6.2 +/- 1.2 adducts/10(8) bases was obtained, with no obvious differences bases on age or cigarette smoking. A small, but statistically significant difference was observed between the levels in females (5.1 +/- 0.4 adducts/10(8) bases) and males 6.7 +/- 1.1 adducts/10(8) bases). The presence of M1G in leukocyte DNA was further verified by analysis using liquid chromatography/electrospray ionization mass spectrometry.  相似文献   

10.
The level of (+/-)-r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) bound to DNA of lymphocytes plus monocytes in 39 coke oven workers exposed to polycyclic aromatic hydrocarbons (PAH) and 39 non-exposed persons (controls) were investigated, each of the groups consisting of smokers and non-smokers. The adduct level was measured by an improved HPLC/fluorescence method (Rojas, M., Alexandrov, K., van Schooten, F. J., Hillebrand, M., Kriek, E. and Bartsch, H., Carcinogenesis, 15, 557-560, 1994) through the release of the corresponding benzo[a]pyrene (B[a]P) tetrols. The anti-BPDE-DNA adduct was detected in 51% of coke oven workers exposed to PAH and in 18% of the non-exposed (control) subjects. The mean level of anti-BPDE-DNA adducts/10(8) nucleotides in coke oven workers (15.7 +/- 37.8) was approximately 8 times higher than in non-exposed subjects (2.0 +/- 8.7). The interindividual variation of adduct levels was approximately 100-fold in coke oven workers and approximately 50-fold in controls respectively. Smokers in the exposed group had 3.5 times more DNA adducts than non-smokers. With the exception of one non-smoker with very high adduct levels (52.8 adducts/10(8)), the control subjects showed the presence of barely detectable adducts in only 16% of the samples examined. The increased in vivo formation in some smokers and high variability of anti-BPDE-DNA adducts in coke oven workers suggests variations in genetically controlled activation/inactivation reactions of PAH metabolism.  相似文献   

11.
Benzo[a]pyrene (BaP) and other polycyclic aromatic hydrocarbons (PAHs) which are present in cigarette smoke, are common air and food genotoxic contaminants and possible human carcinogens. We measured the following PAH levels: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, BaP, dibenzo[a,h]anthracene, benzo[g,h,i]perylene as well as (+/-) syn and anti BaP diol-epoxide (BPDE) DNA adducts in autopsy samples from the lungs of non-smokers, ex-smokers and smokers who had lived in Florence, Italy. PAH levels in lung tissue were similar in all groups, with the exception of dibenzo[a,h]anthracene (DBA), which was higher in lung samples from smokers (n = 10, 0.18+/-0.17 ng/g d.w, mean +/- S.D.) compared to non-smokers (n = 15, 0.046+/-0.025 ng/g d.w) (P < 0.05), whereas ex-smokers (n = 5), had intermediate levels (0.07+/-0.03 ng/g d.w). The average level of total BPDE-DNA adducts was 4.46+/-5.76 per 10(8) bases in smokers, 4.04+/-2.37 per 10(8) in ex-smokers and 1.76+/-1.69 per 10(8) in non-smokers. The levels of non-smokers were significantly different (P < 0.05) from the levels of the smokers and ex-smokers combined. Total BPDE-DNA adducts were correlated with BaP levels in the lung samples in which both determinations were obtained (r = 0.63). Our results demonstrate that the biological load of PAHs due to environmental pollution is similar in individuals who smoke and those who do not, but BPDE-DNA adducts are higher in smokers and ex-smokers compared to non-smokers. This study further confirms the usefulness of BPDE-DNA adduct levels determination in the lungs from autopsy samples for monitoring long-term human exposure to BaP, a representative PAH.  相似文献   

12.
Among the main DNA-reactive metabolites of 1,3-butadiene (BD), both 1,2:3,4-butadiene diepoxide (BDE) and 1,2-epoxy-3-butene (BME) have been reported in mice and rats exposed to BD, but blood and tissue levels of these metabolites are much higher in mice than in rats under similar exposure conditions. BDE, being more reactive and genotoxic than BME, is thought to be responsible for the greater susceptibility of mice to BD carcinogenicity. While BDE is a DNA-alkylating agent and some BDE adducts have been characterized, no sufficiently sensitive method has been reported for studying BDE-DNA binding in vivo. In the present investigation, a modified dinucleotide/monophosphate version of the 32P-postlabeling assay was applied to detect BDE-DNA adducts, which were prepared by reacting BDE with calf thymus DNA or deoxyribooligonucleotides [(AC)10, (AG)10, (CCT)7 and (GGT)7] in vitro or with skin DNA of mice in vivo upon topical treatment. Optimal resolution by 2-D PEI-cellulose TLC of the highly polar 5'-monophosphate adducts was achieved at +4 degrees C using 0.3 M LiCI (DI) and 0.4 M NaCl, 0.04 M H3BO3, pH 7.6 (D2). The profiles of the 32P-postlabeled adducts were similar for calf thymus and skin DNA, with 3 major spots being detected. Adducts obtained in in vitro and in vivo experiments were compared by re- and cochromatography in 4 or 5 different solvents, and these experiments provided evidence that corresponding BDE adducts, for the most part, were identical and represented adenine derivatives. Guanine adducts were not detected by this method although literature data indicate their formation. Quantitatively, the assay responded linearly to adduct concentration, as shown in an experiment where BDE-modified skin DNA was serially diluted up to 81-fold with control DNA. The limit of detection was approximately 1 adduct in 10(8) normal nucleotides. Further, in an in vivo dosimetry study, skin DNA from groups of 8 individual mice treated with different doses of BDE (1.9, 5.7, 17, 51 and 153 mumol/mouse) for 3 days exhibited a linear relationship (r > or = 0.992) between adduct levels and dose. The results suggest that the 32P-postlabeling assay described herein will have utility in mechanistic studies and biomonitoring of DNA adduct formation from BDE and possibly other polar epoxides.  相似文献   

13.
Platinum-DNA adducts can be assayed in peripheral blood leukocytes by means of atomic absorption spectroscopy and ELISA, and high adduct levels have been correlated previously with favorable clinical response to platinum-based chemotherapy. Our purpose was to study adduct formation in peripheral blood leukocytes by means of a new method, inductively coupled plasma mass spectroscopy (ICP-MS), and to correlate adduct formation with clinical response and toxicity. Platinum (Pt)-DNA adducts were measured by means of ICP-MS in leukocytes of 66 patients receiving a cisplatin- or carboplatin-based chemotherapy, collected either before the beginning of treatment and incubated in vitro with cisplatin or 1 and 24 h after the administration of drug to the patient. The Pt-DNA adduct level in leukocytes from patients exposed to drug in vitro was 14.33 +/- 14.71 fmol/microgram DNA (mean +/- SD), which was not significantly different from the value of 23.4 +/- 19.53 fmol/microgram DNA observed in leukocytes from nine healthy volunteers. In samples collected after the administration of chemotherapy, Pt-DNA adducts ranged from 1.91 +/- 3.59 fmol/microgram DNA (mean +/- SD) at the 1-h time point to 2.61 +/- 3.35 fmol/microgram DNA at 24 h (P > 0.05). Adduct levels in leukocytes exposed in vitro did not correlate with adduct levels from patients treated with cisplatin-based chemotherapy (r = 0.085 and 0.011 at 1 and 24 h, respectively). At 24 h, adduct levels in patients receiving cisplatin (3.15 +/- 3.64 fmol/microgram DNA, mean +/- SD) were significantly higher (P = 0.02) than those observed in patients treated with standard dose carboplatin (0.57 +/- 0.73 fmol/microgram DNA) and also higher than those in patients receiving high-dose carboplatin (1.18 +/- 1.06 fmol/microgram DNA), although the latter difference did not reach statistical significance (P = 0.071). No differences in adduct levels (mean +/- SD) were evident between patients responsive (3.23 +/- 3.51 fmol/microgram DNA) and nonresponsive (2.34 +/- 3.01 fmol/microgram DNA) to chemotherapy. In the homogeneous group of patients treated with combination of cisplatin and 5FU, received dose intensity, hemoglobin decrease, and posttreatment creatinine could not be linked with the extent of leukocyte adduct formation. The data presented here demonstrate that ICP-MS allows the detection of adducts in patients treated with cisplatin or carboplatin and suggest that adduct formation in leukocytes is not a major determinant of response or toxicity.  相似文献   

14.
A photochemical treatment (PCT) process using a novel psoralen and long wavelength ultraviolet light (UVA, 320-400 nm) has been developed to inactivate bacteria and viruses in platelet concentrates. This study evaluated the efficacy of PCT for inactivation of leukocytes that contaminate platelet preparations. Three psoralens, 8-methoxypsoralen (8-MOP), 4'-aminomethyl 4,5', 8-trimethylpsoralen (AMT), and the novel psoralen S-59, were compared using the following four independent but complementary biological and molecular assays. (1) T-cell viability: Treatment with 150 mumol/L S-59 and 1.0 to 3.0 Joules/cm2 UVA inactivated >5.4 +/- 0.3 log10 of T cells in full-sized single-donor plateletpheresis units. Using 1.0 Joule/cm2 UVA, the lowest dose of S-59, AMT and 8-MOP required to reduce the number of T cells to the limit of detection was 0.05 micromol/L, 1.0 micromol/L, and 10.0 micromol/L, respectively. (2) Cytokine synthesis: Treatment with 1.9 Joules/cm2 UVA and 150 micromol/L S-59 or AMT completely inhibited synthesis of the cytokine IL-8 by contaminating leukocytes during 5 days of platelet storage. After treatment with 75 micromol/L 8-MOP and 1.9 Joules/cm2 UVA, only low levels of IL-8 were detected. (3) Psoralen-DNA adduct formation: The combination of 1.9 Joules/cm2 UVA and 150 micromol/L S-59, AMT, or 8-MOP induced 12.0 +/- 3.0, 6.0 +/- 0. 9, and 0.7 psoralen adducts per 1,000 bp DNA, respectively. (4) Replication competence: Polymerase chain reaction (PCR) amplification of small genomic DNA sequences (242-439 bp) after PCT was inhibited. The degree of PCR amplification inhibition correlated with the level of adduct formation (S-59 > AMT > 8-MOP). In contrast, 2,500 cGy gamma radiation, a dose that inactivates >5 log10 of T cells in blood products, had minimal effect on cytokine synthesis and did not induce sufficient DNA strand breaks to inhibit PCR amplification of the same small DNA sequences. These results demonstrate that leukocytes are sensitive to PCT with psoralens and among the psoralens tested S-59 is the most effective. Therefore, PCT has the potential to reduce the incidence of leukocyte-mediated adverse immune reactions associated with platelet transfusion.  相似文献   

15.
Lifetime chronic exposure of mice to the aromatic amines 4-aminobiphenyl (ABP) and 2-acetylaminofluorene (AAF) produces liver and urinary bladder tumors. In parallel experiments, DNA adduct levels in target tissues reach a steady-state (a balance between adduct formation and removal) after about four weeks of either AAF or ABP ingestion. For these and other carcinogens, steady-state DNA adduct levels most frequently increase linearly with dose, but the formation of tumors also depends upon a variety of factors, including the proliferative capacity of the target tissue, the sex of the animal, genotoxic properties of the specific adducts formed, and other unknown events. Chronic dosing experiments in animal models are of interest for human risk assessment because human exposure is typically intermittent, involving repeated exposures. However, it is to be expected that in a genetically-diverse human population, where the lifetime averages > 70 years, the relationship between tumorigenesis and DNA adduct formation will be relatively more complex than that observed in mice. From our studies of chronic ABP exposure in male mice, we have obtained the daily dose of ABP and the steady-state level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) adduct associated with a 50% mouse bladder tumor incidence. Our attempt at a human extrapolation for adducts and urinary bladder cancer in smoking males (20-40 cigarettes/day) is based on the ABP dose per cigarette, values for the dG-C8-ABP adduct in bladder biopsies of lifetime heavy smokers at age approximately 70, and the smoking-related bladder tumor incidence (absolute lifetime risk) for Caucasian males in the United States aged 65-84 years. The extrapolation has produced two major predictions, one related to adduct formation and the other related to tumorigenesis. First, the observed level of smoking-related dG-C8-ABP in DNA of human bladder epithelium, expressed as a function of daily ABP intake, is about 3500-times higher than similar data for mice, which suggests that humans may perform the biotransformation of ABP more efficiently than mice. Second, at a similar bladder tumor incidence, mouse bladder contained adduct concentrations that were much higher than those observed in human bladder; for example, at a 2.6% tumor incidence, mouse bladder contained an average of 55.5 fmol dG-C8-ABP/microgram DNA (1850 adducts/10(8) nucleotides), while bladders from Caucasian male smokers contained an average of 0.036 fmol dG-C8-ABP/microgram DNA (1.2 adducts/10(8) nucleotides). This suggests that factors other than ABP-DNA adducts, such as adducts of other carcinogens, the influence of promoters, and synergistic effects of all of these factors contribute substantially to smoking-related bladder cancer in humans.  相似文献   

16.
7-(2-Hydroxypropyl)guanine (7-HPG) constitutes the major adduct from alkylation of DNA by the genotoxic carcinogen, propylene oxide. The levels of 7-HPG in DNA of various organs provides a relevant measure of tissue dose. 7-Alkylguanines can induce mutation through abasic sites formed from spontaneous depurination of the adduct. In the current study the formation of 7-HPG was investigated in male Fisher 344 rats exposed to 500 ppm of propylene oxide by inhalation for 6 h/day, 5 days/week, for up to 20 days. 7-HPG was analyzed using the 32P-postlabelling assay with anion-exchange cartridges for adduct enrichment. In animals sacrificed directly following 20 days of exposure, the adduct level was highest in the respiratory nasal epithelium (98.1 adducts per 10(6) nucleotides), followed by olfactory nasal epithelium (58.5), lung (16.3), lymphocytes (9.92), spleen (9.26), liver (4.64), and testis (2.95). The nasal cavity is the major target for tumor induction in the rat following inhalation. This finding is consistent with the major difference in adduct levels observed in nasal epithelium compared to other tissues. In rats sacrificed 3 days after cessation of exposure, the levels of 7-HPG in the aforementioned tissues had, on the average, decreased by about one-quarter of their initial concentrations. This degree of loss closely corresponds to the spontaneous rate of depurination for this adduct (t 1/2 = 120 h), and suggests a low efficiency of repair for 7-HPG in the rat. The postlabelling assay used had a detection limit of one to two adducts per 10(8) nucleotides, i.e. it is likely that this adduct could be analyzed in nasal tissues of rats exposed to less than 1 ppm of propylene oxide.  相似文献   

17.
We used P1-enhanced 32P-postlabeling to investigate DNA adduct formation in the bone marrow of B6C3F1 mice treated intraperitoneally with benzene (BZ). No adducts were detected in the bone marrow of controls or mice treated with various doses of BZ once a day. After twice-daily treatment with BZ, 440 mg/kg, for 1 to 7 days, one major and two minor DNA adducts were detected. The relative adduct levels ranged from 0.06-1.46 x 10(-7). In vitro treatment of bone marrow from B6C3F1 mice with various doses of hydroquinone (HQ) for 24 h also produced three DNA adducts. These adducts were the same as those formed after in vivo treatment of bone marrow with BZ. Co-chromatography experiments indicated that the principal DNA adduct detected in the bone marrow of B6C3F1 mice was the same as that detected in HL-60 cells treated with HQ. This finding suggests that HQ may be the principal metabolite of BZ leading to DNA adduct formation in vivo. DNA adduct 2 corresponds to the DNA adduct formed in HL-60 cells treated with 1,2,4-benzenetriol. DNA adduct 3 remains unidentified. After a 7-day treatment with BZ, 440 mg/kg twice a day, the number of cells per femur decreased from 1.6 x 10(7) to 0.85 x 10(7), indicating myelotoxicity. In contrast, administration of BZ once a day produced only a small decrease in bone marrow cellularity. These studies demonstrate that metabolic activation of BZ leads to the formation of DNA adducts in the bone marrow. Further investigation is required to determine the role of DNA adducts and other forms of DNA damage in the myelotoxic effects of exposure to BZ.  相似文献   

18.
1,4-Phenylenebis(methylene)selenocyanate (p-XSC) is an effective chemopreventive agent against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma in female A/J mice. While p-XSC can effectively inhibit NNK-induced DNA methylation in female A/J mice and in male F344 rats, its effect on NNK-induced oxidative DNA damage had not been determined. Thus, the effect of p-XSC on the levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in lung DNA from A/J mice and F344 rats treated with NNK was examined. Mice were given NNK by gavage (0.5 mg/mouse in 0.2 ml corn oil, three times per week for 3 weeks) or by a single i.p. injection (2 mg/mouse in 0.1 ml saline) while maintained on a control diet (AIN-76A) or control diet containing p-XSC at 10 or 15 p.p.m. (as Se) starting 1 week before NNK administration and continuing until termination. Mice were killed 2 h after the last NNK gavage in the multiple administration protocol or 2 h after the single i.p. injection. Treatment with NNK by gavage significantly elevated the levels of 8-OH-dG in lung DNA of A/J mice from 0.7 +/- 0.1 to 1.6 +/- 0.2 adducts/10(5) 2'-deoxyguanosine (dG) (P < 0.001), while dietary p-XSC (at 10 p.p.m. Se) prevented significant elevation of the levels of this lesion caused by NNK, keeping them at 0.9 +/- 0.1 adducts/10(5) dG (P < 0.003). Injection of NNK in saline also significantly increased the levels of 8-OH-dG in lung DNA of A/J mice from 1.2 +/- 0.6 to 3.6 +/- 0.8/10(5) dG adducts (P < 0.01), while dietary p-XSC (at 15 p.p.m. Se) kept these levels at 1.9 +/- 0.5 adducts/10(5) dG (P < 0.03). Rats were given a single i.p. injection of NNK (100 mg/kg body wt) in saline while being maintained on control diet (AIN-76A) or control diet containing p-XSC (15 p.p.m. as Se) starting 1 week before NNK administration and continuing until termination. The rats were killed 2 h after injection. Treatment with NNK using this protocol significantly elevated the levels of 8-OH-dG in lung DNA of F344 rats from 2.6 +/- 0.5 to 3.5 +/- 0.5 adducts/10(5) dG (P < 0.03), while dietary p-XSC (at 15 p.p.m. Se) kept the levels of this lesion at 2.2 +/- 0.6 adducts/10(5) dG (P < 0.01). Our findings suggest that the chemopreventive efficacy of p-XSC against NNK-induced lung tumorigenesis in A/J mice and F344 rats may be due in part to inhibition of oxidative DNA damage.  相似文献   

19.
Cigarette smoke condensates (CSCs) of both mainstream (MS) and sidestream (SS) smoke were used to treat mice topically in equivalent amounts. Human skin maintained in short-term culture was also treated with the condensates. DNA adducts, induced by the CSCs and detected by the nuclease P1 method of 32P-postlabelling, were quantified in a number of murine tissues and in the human skin DNA. In the five mouse tissues studied both MS-CSC and SS-CSC produced characteristic diagonal radioactive zones on TLC, indicative of the formation of multiple DNA adducts. In three tissues (skin, lung and kidney), SS-CSC induced greater total adduct levels than MS-CSC (statistically significant in skin and kidney, p < 0.05). However, greater adduct levels induced by MS-CSC were recorded for heart and bladder DNA (not statistically significant). Similar results to those found in mouse skin were obtained with human skin; SS-CSC induced a approximately 2-fold greater level of DNA adducts than MS-CSC (p < 0.05). Incubation of DNA directly with condensates in vitro demonstrated that DNA adducts could be formed without an exogenous metabolizing system. This direct interaction of condensates with DNA occurred at similar levels for both MS- and SS-CSC, although inclusion of an oxygen radical-generating system enhanced the SS-CSC binding to a greater extent than that of the MS-CSC.  相似文献   

20.
We have investigated the mutagenic potential of site-specifically positioned DNA adducts with (+)- and (-)-cis-anti stereochemistry derived from the binding of r7,t8-dihydroxy-t9,10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene (BPDE) to N2-2'-deoxyguanosine (G1 or G2) in the sequence context 5'TCCTCCTG1 G2CCTCTC. BPDE-modified oligodeoxynucleotides were ligated to a single-stranded DNA vector and replicated in Escherichia coli or simian kidney (COS7) cells. The presence of (+)- or (-)-cis adduct strongly reduced the yield of transformants in E. coli, and the yield was improved by the induction of SOS functions. Both adducts were mutagenic in E. coli and COS cells, generating primarily G --> T transversions. In E. coli, the (-)-cis adduct was more mutagenic than the (+)-cis adduct, while in COS cells, both adducts were equally mutagenic. These results were compared with those obtained with stereoisomeric (+)- and (-)-trans adducts [Moriya, M., et al. (1996) Biochemistry 35, 16646-16651). In E. coli, cis adducts, especially (-)-cis adducts, are consistently more mutagenic than the comparable trans adduct. In COS cells, trans adducts yield higher frequencies of mutations than the two cis adducts and, with the exception of the high-mutation frequency associated with the (+)-trans adduct at G2, relatively small differences in mutation frequencies are observed for the three other adducts. In E. coli, mutation frequency is a pronounced function of adduct stereochemistry and adduct position. These findings suggest that the fidelity of translesional synthesis across BPDE-dG adducts is strongly influenced by adduct stereochemistry, nucleotide sequence context, and the DNA replication complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号