首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
王美涵  温佳星  陈昀  雷浩 《无机材料学报》2018,33(12):1303-1308
采用掠射角反应磁控溅射法在室温下沉积了纳米结构氧化钨(WO3)薄膜, 并对薄膜进行热处理。利用场发射扫描电镜(FE-SEM)和X射线衍射仪(XRD)对氧化钨薄膜的形貌和结构进行了表征。当掠射角度为80°时, 采用直流电源沉积的氧化钨薄膜具有纳米斜柱状结构, 而采用脉冲直流电源沉积的薄膜呈现纳米孔结构。纳米薄膜经450℃热处理3 h后, 纳米斜柱彼此连接, 失去规整结构, 而纳米孔结构的孔尺寸变大。XRD分析表明室温沉积的氧化钨薄膜具有无定形结构, 经450℃热处理1 h后, 转变为单斜晶相。具有纳米斜柱状或纳米孔结构氧化钨薄膜的光学调制幅度在波长600 nm时达到60%, 且电致变色性能可逆。  相似文献   

2.
采用溶剂热法在氟掺杂的锡氧化物导电玻璃衬底上成功合成制备了长度为400~2000 nm,从基底(80 nm)到尖端(30 nm)锥状塔式WO_3纳米线薄膜,进而通过电化学沉积法在WO_3纳米线表面均匀沉积V_2O_5纳米颗粒,从而得到核壳结构WO_3/V_2O_5纳米线复合薄膜。运用X射线衍射、扫描电子显微镜等手段对复合薄膜进行表征,并运用循环伏安法、计时电流法和紫外可见光谱分析研究了该复合薄膜的电化学性能和光学性能。结果表明,与单一的V_2O_5薄膜相比,该复合薄膜的电致变色性能获得了显著增强。具有更好的循环稳定性、更大的透射率调制幅度(776 nm为67%)和更高的着色效率(776nm为13.5 cm2/C)。该法制备WO_3/V_2O_5核壳纳米结构电致变色综合性能优良,有望在隐身材料和智能变色薄膜材料等领域得到广泛应用。  相似文献   

3.
采用直流反应磁控溅射法,在石英基片上沉积WO_3薄膜,考察了溅射参数对WO_3薄膜结构及其性能的影响,并通过后续热处理得到不同物相结构的薄膜,分析探讨薄膜光致变色与光催化性能间的内在关联。利用XRD、SEM、UV-Vis和UV-Vis-Nir分别对WO_3薄膜的晶型、表面形貌、光学特征及光催化等性能进行分析与表征,实验结果表明,反应溅射氧氩比不同时,WO_3薄膜的光致变色效果不同,变色效果越好的薄膜光催化活性越高;热处理导致WO_3薄膜光致变色特性的消失和光催化活性的降低,未处理得到的非晶态WO_3具有最好的光催化活性。  相似文献   

4.
作为一种直接带隙p型半导体材料,Cu2O在很多工业领域都有良好的应用前景,而Cu2O纳米棒因其一维纳米几何而具有更诱人的性能。然而缺少低成本的制备方式限制了Cu2O纳米棒的工业应用。为了解决这个问题,我们探索了热蒸发掠射角沉积加后退火处理的制备方法,成功获得了取向一致的多晶Cu2O纳米棒阵列薄膜,为Cu2O及类似材料的纳米棒薄膜的大规模工业化生产找到了一种低成本的制备技术。  相似文献   

5.
采用中频孪生非平衡磁控溅射技术,制备了纳米晶结构NiOx电致变色薄膜。利用原子力显微镜、掠射X射线衍射、电化学设备、紫外分光光度计等测试手段分析薄膜结构及电致变色特性。结果表明:室温沉积获得表面质地均匀的NiOx薄膜;在±3V致色电压下,薄膜电致变色性能优异,对可见光透过率调制范围达30%以上,但薄膜寿命低。获得的薄膜为结构疏松的纳米晶结构,易于离子的注入和抽取,变色性能优异,但易发生Li+不可逆注入,薄膜寿命低。  相似文献   

6.
射频磁控溅射法制备TiB2涂层及其性能分析   总被引:3,自引:0,他引:3  
利用射频磁控溅射技术在硅和钢片上沉积了TiB2涂层.采用场发射电子扫描显微镜(FESEM),小掠射角x射线衍射(GAXRD)及X射线光电子能谱(XPS)分别研究了涂层的横截面形貌,晶体结构以及涂层中的元素和化学状态.同时,对涂层的显微硬度和残余应力进行了表征.结果表明, 利用射频磁控溅射法制备的TiB2涂层平整光滑,结构致密,沿[001]晶向择优生长,具有纳米晶结构,硬度显著提高,而且残余压应力较低.  相似文献   

7.
多孔结构可以使氧化钨薄膜的气敏、电致变色等性能得到增强,但目前多孔氧化钨薄膜的制备仍存在困难。本文采用W和Al双靶磁控溅射的方法得到了W-Al合金薄膜后,把合金薄膜浸入NaOH溶液中处理,其中的Al被腐蚀同时W被氧化,从而得到了多孔的氧化钨薄膜。利用SEM观察多孔氧化钨薄膜样品的表面形貌,用XPS分析样品中W的价态,用XRD分析样品的晶体结构,用紫外-可见-近红外分光光度计测量样品的光学性质。结果显示:制得的多孔氧化钨薄膜的平均孔径在100nm左右,呈海绵状疏松结构;薄膜中W的价态以+5价为主;薄膜属于非晶相;在可见光区域,多孔氧化钨薄膜具有较高的透过率,而在近红外区域则具有近似平直的透过率曲线。  相似文献   

8.
采用掠射角直流反应磁控溅射法制备了膜厚约480 nm的NixOy薄膜。利用场发射扫描电子显微镜和能谱仪对NixOy薄膜的表面和断面形貌及化学组成进行了表征;利用电化学工作站和紫外分光光度计对NixOy薄膜进行了不同驱动电压下循环伏安特性、光学调制幅度、光密度变化以及致色效率的测试;通过改变扫描速度,经线性拟合后计算得到离子扩散速率;从计时电流曲线,获得薄膜致/褪色响应时间。研究表明,80°掠射角溅射沉积的NixOy薄膜表面形貌疏松多孔,断面为斜柱状结构,为离子与电子的注入/抽出提供了较大的比表面积;NixOy薄膜的电化学容量和离子扩散速率在±1.2 V驱动电压下得到了显著提高,从而使薄膜展现出优良的光调制幅度和致色效率。同时,薄膜还表现出良好的循环稳定性和快速响应的特性。  相似文献   

9.
结合磁控溅射、lift-off工艺和脱合金法制备了纳米多孔金薄膜及其微电极结构。首先利用磁控溅射法和lift-off技术制备了金银合金叉指型微薄膜电极结构,然后采用浓硝酸通过脱合金方法进一步制备出纳米多孔金薄膜微电极结构。本文系统研究了腐蚀时间对磁控溅射金银合金薄膜去合金化所制备的纳米多孔金薄膜形貌、组分和结构的影响。利用X射线衍射、场发射扫描电子显微镜和透射电子显微镜表征了纳米多孔金薄膜微电极的结构和形貌。结果表明纳米多孔金主要呈现(111)晶面,且脱合金时间对纳米多孔结构形成与演化有明显的影响。随着腐蚀时间增加,纳米多孔金薄膜孔隙度增加,金韧带分布更加均匀,逐渐形成均匀的具有高表面积的开放式多孔结构。  相似文献   

10.
王杰  耿欣  张超 《材料导报》2016,30(1):14-18, 32
近年来,氧化钨(WO_3)基半导体气体传感器由于可用来检测低浓度二氧化氮、二氧化硫、臭氧和氨气等气体而受到广泛关注。将WO_3基材料分为4类:纯WO_3材料、氧化物-WO_3复合材料、贵金属-WO_3复合材料和有机物-WO_3复合材料,总结近年来中外文献中WO_3基材料对不同气体的响应性能,展现近年来国内外WO_3基半导体气体传感器的研究进展。最后根据已有的工作进展,提出合成新型纳米材料、降低工作温度、提高传感器选择性应成为WO_3基半导体气体传感器下一阶段的研究重点。  相似文献   

11.
迈向微型化、集成化及具有高选择性和灵敏度的固体电解质气体传感器已成为未来的发展趋势。文章采用磁控溅射法成功制备了WO_(3)气体传感器敏感电极材料,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等表征手段研究了WO_(3)的结构、成分和形貌并测试了该气体传感器对NO_(2)的气敏性能。XRD结果表明,当退火温度大于400℃时,WO_(3)出现(200)衍射峰,且该衍射峰随退火温度增加而显著增强,表明WO_(3)结晶质量增加。SEM测试结果表明,随着退火温度的升高,薄膜的晶粒尺寸逐渐增大。当退火温度达到500℃时,采用谢乐公式计算其晶粒尺寸达到23 nm。EDS结果表明,退火温度对薄膜的成分也有较大影响,O:W原子比例呈现增大趋势,由2.7增加到3.2,这与XPS结果相符合。通过高温气敏性能测试表明,所制得的WO_(3)敏感电极对NO_(2)表现出了明显的气体响应。本研究为制备微型化、高选择性和灵敏性的固体电解质气体传感器提供了一定的研究基础。  相似文献   

12.
V2O5干凝胶薄膜的制备及应用   总被引:1,自引:0,他引:1  
综述了V2O5干凝胶(VXG)薄膜的结构组成特性,介绍了VXG薄膜的制备方法及其在电压开关、气体传感器、湿度传感器、智能窗和锂电池等领域的应用,指出了该研究存在的问题和发展前景。  相似文献   

13.
导电玻璃作为基底制备WO_(3)纳米片薄膜,通过改变旋涂BiVO_(4)次数,以WO_(3)纳米片薄膜为基底成功制得不同厚度的WO_(3)/BiVO_(4)复合薄膜样品。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)等分析方法对样品进行表征,并对WO_(3)/BiVO_(4)复合薄膜样品进行吸收光谱、光电流、光电催化和交流阻抗测试。结果表明:WO_(3)/BiVO_(4)复合薄膜样品的光电流密度和光电催化降解效率相较于单一WO_(3)纳米薄膜都得到了提高,具有更好的光电化学性能。且旋涂两次BiVO_(4)的WO_(3)/BiVO_(4)复合薄膜样品有最高的光电流密度值(1.79 mA/cm^(2))和光电催化降解效率(约为60.5%),比单一WO_(3)材料的光电流密度(1.30 mA/cm^(2))提高了27.4%,光电催化降解效率也比单一WO_(3)材料的光电催化降解效率(约为47.9%)提升了26.3%,具有最优异的光电化学性能。  相似文献   

14.
新型纳米氧化铜不同于常规氧化铜,具有新颖的形貌和结构,其中包括氧化铜纳米颗粒、氧化铜纳米棒、氧化铜纳米片和氧化铜纳米梭等.新型纳米氧化铜具有优异的物理和化学性质,在众多领域里显示出广阔的应用前景,如应用于生物医药、传感器和催化材料等领域.纳米氧化铜的常规制备方法包括溶剂热法、热解法、微波法和磁控溅射法等.制备新型氧化铜纳米材料及其应用研究已经成为纳米材料领域的研究前沿和热点之一.本文综述了新型纳米氧化铜的制备以及应用的研究进展,探讨了该研究领域亟待解决的问题以及今后可能的发展前景.  相似文献   

15.
介绍了利用磁控溅射和一种液氮冷却装置,制备非晶态WO3薄膜、非晶态LiNbO3薄膜和纳米微晶态NiOx薄膜的有效方法.进而,使用这种液氮冷却装置,采用全程基片冷却方法,制备了单基片无机全固态智能窗--G│ITO│NiOx│LiNbO3│WO3│ITO器件.实验结果表明,在400~800nm的可见光范围内,该器件经过1000次循环后,它的漂白态透射率为63.0%,而着色态透射率为10.6%,这一初步工作表明,基片冷却方法应该是制备有优异性能的无机全固态电致变色智能窗的有效方法.  相似文献   

16.
用电子束蒸发、离子束辅助、反应磁控溅射三种方法在石英衬底上制备了氧化铪薄膜.利用掠角X射线衍射和扫描电镜分析了不同制备工艺条件下氧化铪薄膜的晶体结构和显微结构,用紫外.可见分光光度计、椭偏仪、和纳米硬度计分别测试了不同制备工艺条件下氧化铪薄膜的可见透射光谱、光学常数和硬度.结果表明薄膜的晶体结构、显微结构、光学性能和硬度等都与制备工艺有着密切的关系,电子束蒸发制备的薄膜为非晶相,而离子束辅助和反应磁控溅射制备的薄膜为多晶相,三种方法制备的氧化铪薄膜都为柱状结构,电子束蒸发和离子束辅助制备的薄膜色散严重,但反应磁控溅射制备的薄膜吸收较大,反应磁控溅射制备薄膜的硬度远大于电子束蒸发和离子束辅助制备薄膜的硬度.并分别用薄膜成核长大热力学原理和薄膜结构区域模型解释了不同工艺条件下氧化铪薄膜晶体结构和显微结构不同的原因.  相似文献   

17.
WO3薄膜的显色性和敏感性研究   总被引:1,自引:0,他引:1  
陈祥君  邵丙铣 《功能材料》1993,24(4):314-318
本文利用反应离子束溅射技术制备WO_3薄膜,在衬底温度为室温时,溅射制备的薄膜经电子束(?)时,说明它是无定形的。在电化学过程中,氢离子注入WO_3薄膜,使薄膜显示出蓝色,薄膜的电阻率随之降低.这种显色性和敏感性使WO_3薄膜在显示器件和pH值敏感器件中得到应用。  相似文献   

18.
纳米硅薄膜具有卓越的光学和电学特性,其在光电器件方面潜在的应用越来越引起人们的兴趣.讨论了用磁控溅射法制备纳米硅薄膜的微观机理及沉积参数对薄膜结构和性能的影响.其中,氢气分压、基片温度、溅射功率是磁控溅射法沉积纳米硅的关键参数,适当的温度、较高的氢气分压和较低的溅射功率有利于纳米硅的生成.  相似文献   

19.
在高速钢基体上直流磁控溅射制备TiN/Si3N4纳米复合薄膜.用EDS、XRD、SEM、TEM、HRTEM等对薄膜的组织结构和形貌进行了表征.采用划痕仪和球-盘式摩擦仪分别测试了薄膜的结合力和在大气及真空中的摩擦学性能.结果表明,TiN/Si3N4复合薄膜由纳米TiN相镶嵌于非晶态Si3N4基体内构成.薄膜中Si含量的增加可抑制纳米TiN相的长大,降低薄膜摩擦系数,薄膜的摩擦学性能得到改善.溅射气压升高导致薄膜呈柱状结构,结合力下降,摩擦系数和磨损率上升.0.2Pa下制备含12.9at.%Si的TiN/Si3N4复合薄膜在潮湿空气和真空中均具有良好的摩擦学性能.  相似文献   

20.
电致变色器件(Electrochromic Devices, ECDs)是一种颜色变化受电压调控的智能装置,具有工作温度范围宽、光学对比度高、可逆双稳态性能好、驱动电压低和能耗低等优点,在智能动态调光窗、全彩色电子显示屏、防眩光护目镜、自适应双隐身伪装以及可视化储能等领域展现出了巨大的应用潜力。阴极着色材料氧化钨(WO3)和阳极着色材料氧化镍(Ni O)是两种被广泛研究的无机电致变色材料,由WO3和NiO薄膜组成的互补型电致变色器件在大规模智能窗的应用中具有极高的商业价值。改善电致变色器件的综合性能如光学调制范围、响应速度、循环寿命和耐候性等问题一直备受关注。本文围绕互补型电致变色器件的结构组成,综述了基于WO3和NiO的电致变色全器件的近期研究进展。首先分别阐述了WO3和NiO薄膜的电致变色机理和衰退机制,讨论了改进制备工艺、元素掺杂改性、设计纳米结构和引入复合材料这四种薄膜性能优化策略的作用和最新研究进展,其次,按照器件的组成成分和结构设计介绍了互补型电致变色全器件的分类体系,总结了各组分材料的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号