首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭雅芳  肖剑荣  侯永宣  齐孟  蒋爱华 《材料导报》2018,32(7):1073-1078, 1083
锂硫电池因高比容量和高能量密度引起了研究者们的广泛关注,成为新型锂电池研究热点之一。隔膜作为锂硫电池的重要组成部分,是提高电池各方面性能的关键。现阶段锂硫电池隔膜改性工作主要集中于高性能涂层材料的设计与合成以及新型隔膜材料的开发。本文综述了锂硫电池隔膜改性的研究现状,分别从碳涂层隔膜、元素掺杂碳涂层隔膜、金属氧化物/碳复合涂层隔膜、新型薄膜材料和多层隔膜等五个方面进行介绍,指出了从隔膜入手提高导电性、抑制穿梭效应、减轻锂电极腐蚀,从而提高电池电化学性能的重要性。  相似文献   

2.
锂硫电池具有远高于锂离子电池的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是很具应用潜力的电池体系,因此被广泛的研究和关注。然而硫的导电性能差、利用率低以及多硫化物的穿梭效应等问题使得锂硫电池的循环性能不稳定。为了克服穿梭效应的影响,近年来发展了多种新型的多硫化物阻隔层设计和制备方法来提高电池循环稳定性,本文分别从碳质材料阻隔层、金属氧化物阻隔层以及导电聚合物阻隔层三方面综述了最新的研究进展,并指出免集流体正极材料、阻隔层以及隔膜实现一体化设计将成为锂硫电池研究的发展方向。  相似文献   

3.
碳质材料在锂硫电池中的应用研究进展   总被引:1,自引:0,他引:1  
随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛的应用。经过20多年的发展,现有基于嵌锂化合物正极的锂离子电池已接近其理论容量,但仍不能满足高速发展的电子工业和新兴的电动汽车等行业的要求,寻找具有更高能量密度的电池系统迫在眉睫。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。但是锂硫电池中也存在硫的电导率极低、多硫化物溶解迁移等问题,使其在走向实用化的过程中遇到许多困难。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的高效利用。综述了基于纳米炭-硫复合正极材料,尤其是碳纳米管、石墨烯、多孔炭以及其杂化物等材料复合的电极,分析其结构与锂硫电池性能的关系,并展望锂硫电池的发展方向。  相似文献   

4.
魏安柯  王磊  王祎 《材料导报》2021,35(13):13052-13057,13066
随着便携式电子设备和电动汽车的发展,目前广泛使用的锂离子电池已不能满足市场的需求,锂硫电池作为一种非常有前途的高能化学电源,因其高理论比容量(1675 mAh?g-1)和高理论能量密度(2600 Wh?kg-1)引起了研究者的广泛关注.然而,在锂硫电池的发展过程中,一些突出的问题制约了其发展,包括硫本征导电性差、充放电前后体积变化大、较差的循环稳定性以及生成的多硫化物易溶解等.相关研究表明,将硫与金属-有机骨架(MOFs)材料复合,构筑成具有特殊微观结构的复合正极材料,可显著改善其导电性、循环稳定性和多硫化物的溶解等问题.本文从锂硫电池的工作原理出发,总结了MOFs作为硫载体的优势特点,综述了近几年MOFs材料在锂硫电池正极方面的研究进展,最后对锂硫电池MOFs基正极材料未来的研究思路与发展趋势进行了分析和展望.  相似文献   

5.
《功能材料》2021,52(5)
锂硫电池具有1 675 mAh·g~(-1)的理论比容量,丰富的硫资源,低成本和环境友好等优点,将是下一代最具潜力的高能量密度储能电池之一。然而单质硫的绝缘性、多硫化物的穿梭效应以及活性硫的低含量和低面载量等问题,是导致锂硫电池的实际能量密度低、容量衰减快的主要原因。锂硫电池正极材料的设计与构筑至关重要,自支撑的硫正极材料不需要传统的铝箔集流体,能有效改善活性硫的"两低"问题和提高锂硫电池的电化学性能。综述了自支撑硫正极材料的基体类型及其制备方法对锂硫电池电化学性能的影响,分析了目前自支撑硫正极材料存在的缺陷与问题,并对其未来的发展进行展望。这对开发新型硫正极材料来改善锂硫电池的电性能有着重要意义。  相似文献   

6.
随着科技的发展,人们对储能设备提出了更高的要求,传统的锂离子电池已经接近其容量峰值,难以满足当今社会对其能量密度的要求。锂硫电池具有超高的理论能量密度(2600 Wh·kg-1),有望取代锂离子电池成为下一代高能量密度储能设备。然而,锂硫电池中存在的关键问题,如中间产物多硫化锂的穿梭效应、含硫物种缓慢的反应动力学和硫正极在充放电过程中较大的体积变化等,严重制约了锂硫电池的发展。电纺纳米纤维因其独特的纳米结构,展现出了一些独有的性能,有望在高硫负载量和低电解液等极端条件下解决这些问题。着重评述了电纺纳米纤维在锂硫电池正极、隔膜和夹层这3个方面的材料设计结构以及研究进展,分析了材料性能、结构对锂硫电池性能的影响,指出了电纺纳米纤维面向锂硫电池各部分的研究进展和发展方向。  相似文献   

7.
在能源危机与环境问题日益凸显的背景下,电化学储能技术得到了迅速发展。在“超越锂”储能领域的竞争者中,锂硫电池(Li-S)因其具有高理论比容量、高质量能量密度并且环境友好、价格低廉等优点,成为最有前途的新储能技术。但是,锂硫电池的发展仍存在一些瓶颈问题需要解决,例如正极材料导电性能差、多硫化物穿梭效应及在充放电过程中电极体积膨胀等。作为锂硫电池的关键组成部分,电极和隔膜材料的设计和制备对解决这些问题及电池整体性能提升起到了重要的作用。金属有机骨架(MOFs)及衍生的复合材料作为锂硫电池电极或隔膜修饰材料,具有质量轻、电子和离子传导性好、孔道丰富和活性位点均匀分布等优势。此外,这类复合材料还具备形貌和组分可控、来源丰富和孔径可调等特性,从而便于机制研究。本文全面介绍了锂硫电池组成、工作原理并综述了近几年MOFs及衍生复合材料在锂硫电池中的研究进展,重点讨论了其在正极材料和隔膜材料中的应用,并对未来该材料在锂硫电池研究方向上的前景和突破进行了展望。   相似文献   

8.
在能源危机的驱使下,电动汽车以及大型储能装置的快速发展需要高能量密度的锂二次电池来实现,锂硫电池硫电极因具有高理论比容量和能量密度而倍受关注。此外,单质硫具有储量丰富、成本低和无毒等优点,使得锂硫电池更具有商业竞争力,因此锂硫电池被认为是最有前途的二次电池之一。然而,锂硫电池依然存在电导率低、穿梭效应、体积膨胀和锂枝晶等问题,这限制其广泛应用。因此,研究者们从正极材料和夹层着手,除了对正极材料的导电性加以改善之外,主要从限制多硫化物的穿梭效应和缓冲正极体积膨胀进行研究。研究发现,相比碳基和聚合物基正极材料,金属化合物基正极材料可以更好地改善锂硫电池的倍率性能和循环稳定性。此外,金属化合物材料作为夹层时同样可以有效缓解这些问题,能够更好地抑制多硫化物的溶解和扩散,减少穿梭效应,提高锂硫电池的电化学性能。一些金属氧化物、金属硫化物、金属氮化物、金属磷化物等作为锂硫电池正极材料或夹层都取得了重大进展。对于部分极性金属化合物而言,其不仅能化学吸附充放电中间产物多硫化物,有效改善硫正极的循环稳定性,而且还能在氧化还原反应中表现出电催化活性,加快多硫化物的转化,提高硫正极的倍率性能。本文综述了近年...  相似文献   

9.
随着化石能源的日渐枯竭、能源危机和环境问题的日益突出,开发环境友好的二次电池能源体系迫在眉睫。锂硫电池作为一种新型的储能电池,其理论比容量高达1 675 mAh/g,质量密度可达2 600 Wh/kg,且原材料来源广、成本低等优点,使得其有望代替锂离子电池成为下一代理想的能源电池。近年来,可穿戴电子设备、智能纺织品的出现,对储能电池提出了更高的要求—柔性,因此开发柔性锂硫电池已经成为研究热点。作为锂硫电池的重要组成部分,柔性正极材料的研究和制备对柔性锂硫电池系统的开发至关重要。从锂硫电池柔性正极基体材料入手,对碳材料、导电聚合物材料和新兴的MOF材料等3个方面进行了分类总结,详细阐述了各自制备方法及对柔性正极性能影响。碳材料高的导电性和多孔结构设计、导电聚合物和MOF材料对多硫化物优异的化学吸附作用,均有助于抑制多硫化物的"穿梭效应",提升柔性锂硫电池的长循环电化学稳定性能。最后分析了现有锂硫电池柔性正极材料存在的缺陷与问题,对未来发展方向做出了展望。这将为开发新型的锂硫电池用柔性正极材料提供指导,同时为其它二次电池柔性正极材料开发过程中的共性问题提供实验和理论依据。  相似文献   

10.
锂硫电池因为比当前锂离子电池更高的能量密度和更低的成本,因此有望成为下一代储能设备,但是锂硫电池由于“穿梭效应”而影响快速发展。随着理论计算的发展,综述了近几年锂硫电池正极材料的第一性原理计算,将正极材料分为三类:碳骨架材料、金属化合物材料、其他种类材料。通过第一性原理计算正极材料对多硫化锂的吸附,从微观角度认识吸附机制,并展望理论计算在锂硫电池中的发展前景,为锂硫电池正极材料的选取提供方向。  相似文献   

11.
锂硫电池具有很高的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是最具前景的新型电池之一。石墨烯具有优良的导电性和电化学性能,具有开阔的负载硫的表面和空间,是导电性差的硫黄和硫化锂的良好载体,为锂硫电池正极材料提供了新的研发平台。本文介绍了近年来石墨烯及其复合材料应用于锂硫电池中的研究进展,包括石墨烯或氧化石墨烯负载硫、杂原子掺杂石墨烯负载硫、石墨烯三维网格负载硫和石墨烯-多孔炭复合炭材料负载硫等4种石墨烯基-硫正极材料,概述了其锂硫电池的比容量、倍率性能和循环寿命等性能指标。从石墨烯基锂硫电池正极材料的设计和合成的角度,总结了不同微结构特征的石墨烯及其复合材料组装成锂硫电池的性能特点,并分析了材料组成和微结构对电池性能的影响机制。在总结的基础上展望了石墨烯应用于锂硫电池的发展方向。  相似文献   

12.
<正>随着移动电子设备和电动行业迅速发展,锂硫电池凭借其高的理论能量密度、良好的安全性、丰富的材料来源、成本低廉且对环境友好等优势,已经成为新一代高性能电池的研究热点。但锂硫电池活性物质利用率低、循环稳定性差等问题已经成为制约其实际应用和产业化发展的瓶颈。如何提高锂硫电池的硫利用率、放电容量和循环稳定性已经成为锂硫电池开发的研究关键。本文从正极材料、粘结剂集流体3个方面对锂硫电池的正极部分  相似文献   

13.
近年来,随着可穿戴和便携式产品的快速发展,对柔性电子设备的需求日益增加。柔性电池作为其关键部件,得到了越来越多的研究和关注,开发具有高能量密度的柔性电池,对柔性电子设备的未来发展意义重大。锂硫电池具有较高的理论容量和能量密度,且成本低廉,是未来储能领域发展的重要前沿方向。因此,开发高性能的柔性锂硫电池更能满足未来柔性可穿戴电子器件的需求。但是,传统锂硫电池很难实现较高的柔韧性,因为其电极材料多为刚性材料,不易或不能弯曲;电解液为液态,弯曲过程中,容易发生泄漏;电池结构多为传统物理组装,材料界面结合较差。电池弯曲变形后,将丧失原有性能,或发生性能的快速衰退。鉴于此,适用于柔性锂硫电池的电极材料、固态电解质的开发及电池结构设计创新成为国内外学者研究的热点。目前,柔性电极主要采用碳纳米管、石墨烯、碳布、碳纸等碳基材料或高分子材料,在此基础上的改性材料也被广泛应用。这些材料不仅可满足设备对于机械柔性的要求,同时其多孔及大比表面积等性质有助于离子快速的迁移及界面阻抗的降低等,提高了电池整体性能。固态电解质则多采用凝胶电解质、聚合物固态电解质及无机固态电解质,其化学稳定性优良,安全性高,具有较好的柔性和可塑性。同时,根据拓扑原理,可以设计新的电池结构,如纸张叠层型、线缆型、可编织型等,降低形变过程中电池内部结构的应力变化,以满足电池的柔性要求。本文从电极材料、固态电解质及电池结构设计三方面阐述了锂硫电池柔性化研究的相关成果,分析探讨了面临的问题及未来发展方向。  相似文献   

14.
作为新一代的储能体系,锂硫二次电池以高的理论能量密度(2 600 m Ah/g),廉价的正极材料以及环境友好等特点受到广泛的关注。但是,由于硫的绝缘性和充放电过程中体积的膨胀、锂硫之间复杂的电化学反应及其产物多硫化物的溶解性等诸多问题的存在,阻碍了锂硫二次电池走向商业化。本文从无机金属化合物与硫复合、导电高分子与硫复合、纳米碳及其衍生物与硫复合,以及三元复合等方面出发,综述了近年来锂硫电池正极材料的研究现状,并展望了该材料的未来发展趋势。  相似文献   

15.
<正>随着电动汽车行业及新能源领域的飞速发展和人们环保意识的提高,新型电动汽车受到社会的广泛关注。传统锂离子电池受正极材料理论比容量等因素的制约,能量密度已经达到了理论极限。为满足人们对电动车行驶里程及电池能量密度的需求,研究者将研究方向转向了锂离子电池之外的二次电池体系。锂硫二次电池是以硫或硫基复合材料为正极,锂为负极的新型储能体系,理论  相似文献   

16.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg~(-1))远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。  相似文献   

17.
杜宗玺  汪滨  华超  杜嬛 《功能材料》2021,52(2):2050-2056
锂硫电池存在正极活性材料导电性差、穿梭效应、锂枝晶生长等一系列问题,限制了其商业化发展.本文阐明了锂硫电池的工作原理和性能缺陷,介绍了隔膜改性的研究现状,从功能改性材料和静电纺丝生产工艺两方面总结了隔膜改性的主要思路和作用机理.  相似文献   

18.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响.开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题.由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础.锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用.近年来,锂离子电池开始在电动汽车等动力电池领域得到应用.但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高.由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2600 Wh·kg-1)远高于目前广泛使用的锂离子电池.此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点.因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一.硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离.迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面.相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等.此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附.将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能.本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望.  相似文献   

19.
由于锂硫电池成本低、理论能量密度高、安全、环保,使其极具潜力成为下一代新能源储能体系。但循环过程中电极材料结构产生破坏及多硫穿梭效应是锂硫电池容量衰减的主要原因。为此,本文提出了采用功能互补的炭材料-氮掺杂石墨烯包覆CMK-3材料(N-(CMK-3@G))来解决该问题。该材料基于功能互补原理,利用CMK-3防止石墨烯堆叠及二维石墨烯包覆在CMK-3外面抑制多硫穿梭,并采用氮掺杂的化学吸附提高锂硫电池正极的电化学性能。以N-(CMK-3@G)/S复合材料作为锂硫电池正极,在电流密度为335 mA·g~(-1)时,300次循环后其可逆放电容量为867.3 m Ah·g~(-1),容量保持率为82%。与N-CM K-3/S和N-G/S正极相比,N-(CM K-3@G)/S复合电极倍率性能及极化特性都得到了较大的改善。从炭材料功能出发,对材料设计,不仅可结合CMK-3及石墨烯的功能特点,形成作用互补,提高锂硫电池的循环性能,且氮掺杂可通过化学作用强化对多硫吸附,抑制多硫离子的穿梭,进一步提高锂硫电池性能。  相似文献   

20.
锂硫电池因其具有高能量密度、较好的安全性、绿色环保和低成本等特点,成为未来动力电池最具吸引力的体系之一。但是,因其放电产物多硫化物易溶于有机电解液以致锂硫电池循环性能差,制约了锂硫电池的快速发展。碳材料利用其高的比表面积和多孔结构吸附电极反应的中间产物多硫化锂,起到固硫的作用,提高电池的循环性能。综述了锂硫电池硫/碳正极复合材料的研究现状;分析了影响锂硫电池循环性能的主要因素;简述了锂硫电池硫/碳正极复合材料今后研究的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号