首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
熊健  曾山  王绍平 《岩性油气藏》2013,25(6):122-126
针对水力压裂后油井形成的垂直裂缝中不同位置导流能力不同的特点,根据压裂后流体渗流规律 的变化,推导出考虑启动压力梯度影响的低渗透油藏变导流垂直裂缝井产能预测模型,并分析研究了各 因素对产能的影响。研究结果表明:裂缝导流能力衰减系数对油井产量的影响程度随生产压差的增大而 增强,随裂缝长度的增加而减弱;当裂缝导流能力较小时,裂缝长度越长,裂缝导流能力衰减系数越大,油 井产量越低,反之,裂缝长度越短,裂缝导流能力衰减系数越小,油井产量越高。  相似文献   

2.
致密油层物性极差,天然裂缝发育,体积压裂是实现该类油层有效开发的重要手段。为研究致密油层体积压裂缝网设计参数对产能的影响,基于缝网形成特征,将压裂的致密油层划分为支撑主裂缝、缝网区和未压裂区,缝网区又划分为支撑次裂缝区和未支撑次裂缝区,考虑致密油非达西渗流和油层应力敏感效应,将缝网区与未压裂区简化为双重孔隙系统和单一孔隙系统,建立致密油层体积压裂产能模型,模拟分析体积压裂裂缝参数对产能的影响。研究结果表明:体积压裂可以大幅度提高致密油层产能,并且改造体积和支撑改造体积越大,开启天然裂缝越密,支撑主裂缝越长,支撑主裂缝、次裂缝导流能力越高,则致密油层产能越高,但存在最优值。  相似文献   

3.
为了研究页岩气藏压裂水平井生产动态和预测水平井产量,基于双重介质和离散裂缝模型,利用有限差分求解方法,建立页岩气藏压裂水平井数值计算模型。从储层参数、布缝模式和裂缝形态3个方面,对页岩气藏压裂水平井生产动态进行研究。结果表明:微观流动机理的准确表征对气井产量计算有着重要影响;Langmuir体积越大,基质解吸能力越强,气井稳产阶段产量越高;应力敏感系数越大,裂缝导流能力降低越快,气井产量递减速度越快;U形布缝模式气井产量要大于反U形布缝和锯齿形布缝,弯曲裂缝气井产量要大于平直裂缝,裂缝的分布特点和形态特征对压裂水平井产量计算有着显著影响。研究结果为优化和提高页岩气井产能提供了理论支撑。  相似文献   

4.
利用树状分形理论表征多尺度爆燃次生裂缝的复杂形态,针对致密油藏非线性渗流特性,建立致密油藏水力裂缝层内爆燃压裂非线性渗流模型。根据改造后致密油在地层中的不同流态,将渗流区域分为3个区,推导出3区耦合产能公式。产能影响因素分析结果表明:水力裂缝层内爆燃压裂获得的单井产能约为常规水力压裂的1.5倍;爆燃次生裂缝缝宽分形维数和迂曲度分形维数越大,爆燃次生裂缝面积百分数和爆燃次生裂缝波及区有效渗透率越大,单井产能越高;爆燃次生裂缝分叉角度越小,储层改造体积越大,单井产能越高。在选用爆燃药剂时,应选择能量释放率低或具多级反应速率的药剂,以减小爆燃次生裂缝分叉角度,增大储层改造体积,进而提高单井产能。  相似文献   

5.
考虑启动压力梯度和压敏效应影响下的基质—裂缝、裂缝—井筒的耦合流动,以椭圆渗流理论和叠加原理为基础,通过当量井径原理,建立了带有多条横向裂缝且裂缝间相互干扰的压裂水平井的非稳态产能预测模型,并分析了压裂水平井产量变化规律及各因素对产能的影响。实例计算结果表明,致密油藏压裂水平井初期产量高、递减快、高产期短,后期产量低、趋于平稳、稳产期长。启动压力梯度和应力敏感效应影响大,启动压力梯度、变形系数越大,压裂水平井单井产量越低。水平段长度越长、压裂缝条数越多、裂缝越长、导流能力越大,压裂水平井产量越高,但各自存在最优范围。  相似文献   

6.
致密油藏长缝压裂压力动态和产量变化规律目前尚未明确,开发方案设计缺少理论模型指导。针对长缝压裂基质-裂缝复合流动问题,建立了考虑储层启动压力梯度、裂缝内高速非达西渗流影响的长缝压裂直井基质-裂缝复合流动模型,并运用Laplace变换、点源函数、Stehest数值反演等方法进行求解,明确了致密油藏长缝压裂井压力响应特征和影响因素。研究结果表明,无因次压力及压力导数随启动压力梯度的增加而增大,但启动压力梯度对无因次压力及压力导数的前期影响较小,后期影响较大;非达西渗流系数对无因次压力及压力导数曲线的前期影响较大,随着非达西渗流系数的增大,无因次压力及压力导数增大;裂缝中非达西渗流系数越大,压裂井的产量越低,且压裂井的最佳裂缝半长越小。研究成果为致密油藏长缝压裂方案设计、试井分析等工作提供理论指导。  相似文献   

7.
缝网压裂技术在近期非常规储层改造中取得重要进展,已经得到形成裂缝网络的力学控制条件。针对双重介质致密油藏、采用EQ-LGR方法描述压裂裂缝网络系统建立离散正交缝网数值模型;忽略致密油藏中吸附作用、高速非达西渗流影响和裂缝导流能力变化,模拟不同地层渗透率下实施缝网压裂和常规压裂时的增产效果和裂缝网络对压裂产能的贡献。缝网压裂的增产效果始终高于常规压裂,且致密油藏中缝网压裂后单井产量增加更显著;而相对高渗储层实施缝网压裂与常规压裂的效果较为接近。考虑实施常规压裂更能降低成本和风险,首次明确提出实施缝网压裂的临界渗透率为1.00×10~(-3)μm~2。研究成果不仅为优化压裂裂缝参数提供了手段,也为优选压裂工艺提供了理论依据。  相似文献   

8.
致密油藏储层物性差,大多采用压裂方式开发,当产量下降时需要重复压裂进行增产。建立了基质与人工裂缝相互耦合的致密油藏重复压裂渗流模型,采用离散裂缝模型对压裂形成的人工裂缝进行分析,用三种网格划分体系剖分基质系统、初次压裂裂缝、重复压裂裂缝系统。研究结果表明:裂缝长度和导流能力对重复压裂后的产能影响较大,在生产实际中应采用与储层性质匹配的裂缝长度和导流能力;启动压力梯度对于致密油藏的产能影响明显,在生产设计时需要重点考虑。  相似文献   

9.
由于致密油藏在水平井分段压裂后形成复杂多簇缝网,为了正确表征缝网,更准确地预测产能,根据等效渗流理论,基于Warren-Root模型,将压裂后形成的分段多簇缝网等效为高渗透带,并推导出等效渗透率及高渗透带宽度的关系式。在此基础上,应用复位势理论和势的叠加原理,运用解析法建立了致密油藏分段多簇压裂水平井考虑裂缝间干扰的非稳态产能预测模型。研究表明:致密油藏水平井日产量呈"L"型递减,产量初期递减快,后期趋于平稳;实例计算结果与实际产量接近,相对误差较小;高渗透带渗透率越大,长度越长,压裂水平井产能越大,但基于经济技术等条件,各自存在最优值。该产能预测方法对致密油藏开发具有指导意义。  相似文献   

10.
水平井压裂是致密油藏开发的必要技术手段。为了给出致密油水平井压裂的合理裂缝参数,以大庆油田致密油储层为例,使用油藏数值模拟软件Radial-X建立模型,模拟了致密油水平井压裂生产过程。结果表明,致密油仅在井、缝附近发生渗流,水平井开发的控制范围由水平段长度和压裂改造的缝长、缝密决定。通过水力压裂的裂缝参数敏感性分析得出:裂缝导流能力增加到一定程度即可达到增加水平井产能的目的;增加裂缝数量能提高水平井产能,但是水平井多条裂缝会互相干扰,大庆油田致密油高台子储层2 km井长模型5 a的最优裂缝条数约为20条,扶杨储层5 a的最优裂缝条数约为15条;增加裂缝长度对压后生产有利,但随着裂缝长度增加,产量增加幅度会减小。  相似文献   

11.
体积压裂水平井三线性流模型与布缝策略   总被引:1,自引:0,他引:1  
低渗透致密储层进行大规模压裂改造在地层中形成多条裂缝及复杂裂缝网络是获得经济产能的主要手段,通过有效的方法对压裂水平井裂缝分布评价、压裂改造体积及压裂后产能预测对压裂施工效果分析具有重要意义。为此,在充分结合致密油储层特点和压裂改造设计思路的基础上,针对压裂措施后形成的分级多簇的裂缝排布及裂缝有限导流渗流特征,建立了水平井体积压裂三线性流数学模型,应用Laplace变换,求得定产条件下封闭边界单条裂缝的拉氏空间解;通过Stehfest数值反演及多裂缝叠加原理,得到了体积压裂水平井井底压力和产量的表达式;同时,结合美国巴肯致密油储层生产特征参数对模型的正确性进行了验证。对产能影响因素研究结果表明,裂缝排布方式对储层改造体积影响较大,级簇比越大累积产油量越高;增加裂缝条数可以有效提高储层动用效率,在进行水平井体积压裂措施设计时应充分考虑裂缝级数或簇数增加导致产量下降问题。研究结果对致密油储层水平井体积压裂设计及产能评价具有重要意义。  相似文献   

12.
针对致密储层体积压裂缝网扩展预测和多重孔隙介质耦合流动模拟难度大的问题,开展了基于体积压裂裂缝扩展机理的致密储层流体流动规律研究,建立了多重介质不稳定渗流数学模型和多裂缝互相干扰条件下的压裂裂缝网络扩展模型,并采用有限单元法求解.以鄂尔多斯盆地致密油为例进行生产模拟,分析致密油藏体积压裂水平井不同孔隙介质产量贡献程度....  相似文献   

13.
由于非常规油藏特殊地质条件,导致在进行大规模水力压裂过程中形成了复杂的裂缝网络,复杂缝网的出现导致油藏渗流规律发生变化。基于体积源函数在准确描述复杂缝网形态的基础上,考虑复杂缝网内渗透率,建立了致密油藏体积压裂水平井半解析渗流模型,模型结果的正确性得到了油藏数值模拟的验证。计算结果表明,含有复杂缝网的油藏渗流过程可以分为6 个流动阶段:线性流、供给流动、过渡流、双径向流、晚期径向流以及边界控制流动。缝网渗透率主要影响早期线性流和供给流动,次生裂缝渗透率对供给流动影响较大;过渡流、双径向流以及晚期径向流动受复杂缝网几何尺寸影响较大。该模型为预测体积压裂水平井的产能、认识体积压裂水平井渗流规律以及评价体积压裂效果提供了一种非常有用的方法。  相似文献   

14.
鄂尔多斯盆地致密油藏储量大、分布稳定,是长庆油田5 000万t上产、稳产的重要接替资源。该类油藏由于储层致密、物性差,前期改造效果差,常规压裂技术难以有效动用,急需开辟一条新途径进行油藏的有效改造。文中结合鄂尔多斯盆地致密砂岩油藏自身特征,阐述了"脉冲式加砂、纤维压裂液携砂及等间簇射孔"的一种新型压裂改造技术,在压裂裂缝中通过支撑剂的交替充填,形成稳定的流动通道网络,使裂缝具备较高的导流能力,从而达到提高单井产量的目的。通过3口直井的现场试验,与常规压裂井进行了对比分析。采用高导流能力的脉冲加砂压裂技术,压后初期裂缝导流能力提高14.1%,试油产量、投产产量、单位压差累计产油量和产能指数均比常规压裂井高1.1~1.4倍,取得了较好的现场应用效果。  相似文献   

15.
为了进一步提高爆燃压裂工艺设计与效果预测水平及工程应用效果,基于爆燃压裂原理和油藏渗流理论,利用保角变换方法,建立了爆燃压裂油井产能计算模型(包括流体从油藏边界渗流到爆燃裂缝的渗流外阻模型,和流体在裂缝中渗流入井的渗流内阻模型)并编制了计算软件。以低渗油藏油井F31-10井为例,计算、分析了油藏参数和爆燃裂缝参数对爆燃压裂油井增产效果的影响规律。研究结果表明:爆燃裂缝长度、裂缝数量和爆燃裂缝导流能力对油井增产效果有影响,影响程度由大到小依次是爆燃裂缝长度、裂缝数量和爆燃裂缝导流能力;在爆燃裂缝长度和裂缝数量一定的条件下,存在一个最佳的爆燃裂缝导流能力;爆燃压裂后油井增产倍数为1.365~2.115,且增加爆燃裂缝长度和爆燃裂缝数量比增加爆燃裂缝无因次导流能力对增产更有利。   相似文献   

16.
致密气藏压裂井产能预测方法   总被引:1,自引:0,他引:1  
对低渗透致密气藏实施压裂增产改造是改善储层导流能力、提高储层产能的必要措施。低渗透致密气藏压裂后的产能受多种因素影响,如储层物性、裂缝几何形状、启动压力梯度等。分析产能影响因素、进行压裂井产能预测。有利于制订合理的生产制度,是加快低渗透致密气藏开发进程的关键.基于低渗透致密气藏流体渗流规律。并结合传统的二维裂缝延伸几何模型,通过表皮因子将裂缝几何参数设计与产能分析相结合,形成一种能够快速预测低渗透致密气藏压裂后的拟稳态和瞬态条件下产量的方法..实例分析表明,地层渗透率、气藏厚度、近井伤害表皮因子和压裂施工规模是影响最终产量的主要因素.提出的致密气藏产能预测方法求出的结果与实测数据拟合后误差较小,可为低渗透致密气藏水力压裂设计提供有效技术支持.  相似文献   

17.
裂缝性储层缝网压裂技术研究及应用   总被引:3,自引:1,他引:3  
裂缝性储层压裂井生产能力主要受主裂缝沟通的天然裂缝系统控制区域的大小影响。裂缝性储层压裂改造后,短期产量来自高导流能力的主裂缝,长期产量则主要来自天然裂缝网络。常规压裂以抑制天然裂缝扩展形成主裂缝为主,其控制的渗流区域较为有限,这与压裂增产形成矛盾。因此,要提高压裂井改造效果,需要保证压裂形成的裂缝形态为网络裂缝,沟通更大的渗流区域和更远的裂缝作用距离,充分发挥主裂缝和天然裂缝网络的增产优势。在研究水力压裂裂缝网络形成条件的基础上,对缝网压裂的关键参数进行了分析研究。现场应用结果表明,缝网压裂的增产效果远远高于常规压裂。  相似文献   

18.
水平井体积压裂是实现致密油藏有效开发的关键工程技术手段,对致密油藏体积压裂水平井产能的准确模拟计算为体积压裂参数优化设计和压后生产动态预测提供了参考。基于致密油藏体积压裂水平井生产过程中油藏的实际流动形态特征,将水平井划分三线性流区域,结合Warren-Root模型,考虑储集层启动压力梯度和天然裂缝的影响,建立了致密油藏体积压裂水平井分区复合产能模型。结合现场生产数据验证了模型可靠性,并对产能影响因素进行了分析。结果表明:压后总体产量受到延伸主裂缝的条数、半长和导流能力的影响;启动压力梯度及改造区的弹性储容比和窜流系数对压后中后期产量影响大;未改造区窜流系数和弹性储容比影响后期产量的递减速度。该研究对深化认识致密油藏体积压裂水平井流动规律,完善致密油藏体积压裂渗流理论,提升致密油体积压裂优化设计都具有重要理论意义和实际价值。  相似文献   

19.
考虑变导流能力的垂直裂缝油井产能方程   总被引:1,自引:0,他引:1  
针对水力压裂后形成的垂直裂缝井中裂缝不同位置导流能力不同的特点,根据压后流体渗流规律变化,基于稳定流理论,推导了按线性、指数及对数3种形式变化的低渗气藏变导流能力的垂直裂缝油井的产能预测模型,并分析研究了裂缝导流能力的不同变化形式对油井产量的影响。研究结果表明:与考虑常导流能力的垂直裂缝油井产量相比,考虑变导流能力的垂直裂缝油井产量将下降;按线性、指数及对数3种形式的变导流能力对垂直裂缝油井产量影响程度不一致,同时3种形式的变导流能力的系数越大,垂直裂缝油井产量上升幅度越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号