首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谭毅  王凯 《无机材料学报》2019,34(4):349-357
硅的理论嵌锂比容量是石墨材料比容量的十倍以上, 脱锂电位低, 资源丰富, 倍率特性较好, 故高比能量的硅基材料成为了电动汽车?可再生能源储能系统等领域的研究热点?但由于其在脱嵌锂过程中巨大的体积膨胀效应会导致硅电极材料粉化和结构崩塌, 并且在电解液中硅表面重复形成的固相电解质层(SEI)使极化增大?库伦效率降低, 最终导致电化学性能的恶化?为了解决上述问题, 加快实现硅基电极的商业化应用, 本文系统总结了通过硅基材料的选择和结构设计来解决充放电过程中体积效应的工作, 并深入分析和讨论了具有代表性的硅基复合材料的制备方法?电化学性能和相应机理, 重点介绍了硅碳复合材料和SiOx(0<x≤2)基复合材料?最后对硅基负极材料存在的问题进行了分析, 并展望了其研究前景?  相似文献   

2.
硅材料的比容量(Li15Si4,3590mAh/g)是已商用化的石墨负极(LiC6,372mAh/g)的10倍,硅负极的商业化可有效提高单体电芯的容量,已成为当前研究热点。然而,由于硅负极材料在充放电循环时存在400%的体积膨胀,容易导致电极材料粉化开裂而从集流体上剥落,使得活性物质与活性物质、集流体之间失去电接触,同时不断形成新的固体电解质相界面膜(SEI膜),最终导致电化学性能的恶化。本研究从硅负极材料的储锂机理出发,提出硅负极材料锂化/脱锂化产生的体积膨胀效应导致的粉化开裂和SEI膜不稳定问题的最新调控方法和研究方向,为硅负极材料的研究应用提供支持。  相似文献   

3.
发展锂离子电池是缓解当前能源和环境问题的有力措施,但其能量密度已无法满足未来储能装置的高要求。发展高比能量型锂离子电池必须从提高电极材料的性能入手。硅基材料具有容量高、成本低、平台电压低等优点,被认为是最具潜力的负极材料。然而,该类材料在充放电过程中会发生巨大的体积变化(300%),导致电池容量下降严重甚至失效。近年来,研究者们开始着眼于通过对电极中的粘结剂进行结构设计和复合改性来提升硅基负极的性能,并取得了显著的效果。基于硅基负极目前存在的问题,总结了适用于硅基负极的粘结剂类型,并从粘结剂分子链结构设计和增强电极微粒间作用力这两个方面综述了近年来硅基负极中粘结剂的设计改性进展,最终展望了硅基负极用粘结剂的发展趋势和未来前景。   相似文献   

4.
在锂电池中,粘结剂主要用来稳定电极结构,虽然含量较少,但是对电池性能影响较大.聚偏氟乙烯(PVDF)是目前主要使用的粘结剂,但其在不同活性物质中的应用存在不同的缺陷.因此对于不同活性物质应选用不同的粘结剂.在正极中,磷酸铁锂和三元材料(NCM)由于本身晶型限制,表现出较差的导电性和离子电导率,具有更高离子扩散系数的粘结剂对电池性能的提高作用更明显.硫正极在充放电过程中,"飞梭效应"是导致电池性能变差的主要因素之一,而具有含氧官能团的粘结剂捕获多硫化锂能力极强,对电池性能的提高作用明显.对于锂电池负极活性材料,传统PVDF粘结剂易与碳基材料反应导致锂盐沉积在负极,影响电池性能.因此在电池循环中,能产生更均一且稳定的SEI膜的粘结剂可阻止活性物质脱落和促进锂离子传导,提高电池性能.硅基负极材料在脱嵌锂过程中,材料体积变化较大,易使活性物质从集流体上脱落,而粘弹性适中且具有立体网状结构的粘结剂可以使硅负极发生可逆膨胀,减少活性物质损失,提升电池性能.此外,尖晶石结构的LTO负极材料导电性较差,人们对导电聚合物粘结剂关注较多,未来其也将会是主要研究方向之一.本文将近几年关于粘结剂的文献基于活性材料进行分类综述,探究粘结剂对锂电池的影响,并对未来正负极粘结剂的发展趋势进行展望.  相似文献   

5.
锂离子电池硅基负极材料的研究进展   总被引:1,自引:1,他引:0  
硅负极材料具有很高的理论比容量(4200mAh/g),但充放电过程中巨大的体积变化导致其循环性能很差,同时较低的电导率以及与常规电解液的不相容性等因素限制了硅作为负极材料在锂离子电池中的应用。因此,目前大部分研究人员都致力于解决其循环性能差的问题。综述了近年来改善硅基负极材料性能的最新进展,指出了硅基材料作为锂离子电池负极材料的研究前景。  相似文献   

6.
硅作为一种极具潜力的锂离子电池负极材料,已引起研究者的广泛关注。然而硅材料储锂过程中伴随着巨大的体积变化,导致电极/电解液界面不稳定,是限制硅电极商业化的主要因素之一。深入了解硅负极的界面反应机理,有助于改善硅负极的界面性质,进而提高硅负极的电化学性能。本文综述了硅负极界面反应的演化机制,包括Li-Si合金化过程、硅表面氧化硅的反应和表面纯化膜的形成,并讨论了其对硅电化学性能的影响。  相似文献   

7.
以包覆结构Si/C复合材料作为负极的锂离子电池(LIBs)具有能量密度高、自放电效率低、循环寿命长等特点。然而,锂在硅中插入/脱出过程的体积膨胀和固体电解质界面膜(SEI)的不稳定性,阻碍了硅的商业化应用。本文通过对近年来新型包覆结构Si/C复合负极材料的构筑方法、电化学性能、比容量和循环性能进行分析和研究,发现包覆结构Si/C复合负极材料不仅可以缓解硅在锂化过程中的体积膨胀和炭层破裂,而且可以有效提高LIBs循环稳定性。因此,Si/C复合材料有望取代石墨成为高容量LIBs的主要负极材料。  相似文献   

8.
梁杰铬  罗政  闫钰  袁斌 《材料导报》2018,32(11):1779-1786
在全球能源与环境问题日趋紧迫的大背景下,可再生能源的获取与利用途径及高效安全的储能技术的研发一直是工业界和科学界关注的热点之一。锂离子二次电池作为能量存储器件,拥有高比能量、长循环寿命等优点,近十几年来其研究取得了长足进展,并在各类便携式电子设备和电动交通工具中获得了广泛应用。然而,随着各种高性能设备的不断涌现,商业化的锂离子电池越来越难以满足其在能量密度、循环稳定性和安全性等方面的要求。为了进一步提高锂离子电池的能量密度,需要开发出高比容量的负极材料(硅、锡和锂等)以取代传统石墨负极。硅、锡等新式负极材料通过与锂离子反应形成含锂化合物的原理来存储与释放锂离子,完成电池的一个充放电过程。这个过程往往伴随着负极材料体积的剧烈变化,经历较长时间循环使用后会导致负极材料的粉化甚至从集流体上剥离,引起电池容量迅速衰减甚至失效。而锂负极通过锂在负极上的溶解和沉积来完成电池的充放电过程,该过程不存在反应相变所导致的体积变化。另外,锂金属负极材料具有极高的质量比容量(3 860mAh/g)、低密度(0.59g/cm3)和低的还原电位(-3.04V,相比于氢标准电极),被认为是一种理想的可充电电池负极材料。然而,锂的枝晶生长、锂金属电池低的库伦效率和锂的无主体沉积引起的体积膨胀等一些关键问题长期以来制约着锂负极的商业应用。锂的每次沉积都会产生枝晶,在充放电循环中,锂枝晶会导致电池内部短路甚至发生爆炸,带来严重的安全问题。除此之外,锂枝晶还会增加负极表面积,新暴露的锂金属会与电解液反应生成固态电解质膜(Solid electrolyte interface,SEI),这会损耗活性材料以及降低电池的库伦效率。为了解决以上问题,研究者们对锂金属电极进行了许多探索,尤其是在锂枝晶生长的机理及其抑制方法方面。一些理论模型如扩散模型、SEI保护模型、电荷诱导生长模型和薄膜生长模型等,以及与这些模型相对应的一些抑制方法如均匀锂离子流法、SEI膜保护法、稳定沉积主体法和静电屏蔽保护法等被提出。这些抑制方法能够在一定程度上缓解锂枝晶的生长问题,但都未能达到商业化应用的要求。本文总结了近几年研究人员针对锂离子电池锂金属负极的一些重要研究,系统地介绍了业内较为认同的枝晶生长模型和影响因素,并着重叙述了抑制枝晶生长的方法及成效,最后就锂金属负极将来的研究方向给出一些建议。  相似文献   

9.
硒化锡(SnSe、SnSe_2)因其特殊的层状晶体结构以及较高的导电性,有望成为锂/钠离子电池的负极材料。但是硒化锡负极在充放电过程中体积会反复变化,导致电极结构及表面SEI膜(电极与电解液界面)遭到破坏,使活性材料失去电接触,从而导致循环容量迅速衰减;此外,硒化锡转化反应中间产物Li_2Se/Na_2Se的导电性较差,阻碍了电荷的传输,从而影响了硒化锡电极的电化学反应活性。本文针对硒化锡电极在储锂/钠过程中存在的问题,总结了提升其电化学性能的手段,并概述了国内外学者从构建特殊纳米结构和复合结构等层面上采取的解决办法,揭示了其电化学存储机制以及能够获得的电化学性能。  相似文献   

10.
锂离子电池作为新一代绿色能量储存和转换装置,具有广阔的应用前景和巨大的经济价值。负极材料是锂离子电池的核心部件之一,其结构和性质对电池的性能起着关键性作用。在众多碳基负极材料中,石墨类材料是目前商业化锂离子电池中应用最广的负极材料。但石墨类负极材料存在可逆容量较低、离子扩散动力学和电解液兼容性较差、体积膨胀率较高等问题,导致锂离子电池的能量密度、大电流倍率性能及循环稳定性等受到严重限制。尤其是近年来新能源汽车对续航里程和快速充放电能力的需求不断提高,使得石墨类负极材料在能量密度与功率密度方面的缺陷日渐凸显。为改善现有石墨类负极材料某些方面的缺陷,提高其综合性能,研究者们主要从石墨类负极材料的表面包覆、化学修饰、元素掺杂和微晶结构优化等角度进行了广泛探究,并取得了丰硕的成果。主要体现在:(1)表面包覆,构筑核壳结构,改善负极材料与电解液的兼容性;(2)化学修饰,调控界面化学性质,增强负极材料表面SEI膜(电极/电解液界面膜)的稳定性;(3)元素掺杂,调节石墨微晶表面的电子状态和导电性,强化负极材料的嵌-脱锂行为;(4)微晶结构优化,修筑三维(3D)梯级纳米孔道,改善锂离子的传输路径,提高负极材料的储能容量和倍率性能。本文简要介绍了锂离子电池的工作原理和其对石墨类负极材料的要求,重点综述了石墨类负极材料在结构调控与表面改性等方面的最新研究进展,并对石墨类负极材料的未来发展趋势进行了展望,以期为高性能锂离子电池用新型碳基负极材料的研发与推广应用提供参考。  相似文献   

11.
随着环境问题和能源问题的日益突出,传统汽车逐渐走向新能源化。锂离子电池具有放电电压平台高、自放电小、环境友好等优点,被认为是最有前景的新能源汽车动力之一。然而,随着人们对新能源汽车续航能力要求的逐渐提高,进一步提高汽车动力电池的能量密度成为当今社会研究的热点。目前,商业化车用动力锂离子电池的正极材料以磷酸铁锂(LiFePO_4)和三元材料(Li(Ni_xCo_yMn_(1-x-y)) O)为主,负极以石墨为主,其能量密度仅为200~300 Wh·kg~(-1)。因此,提高汽车动力电池的能量密度,研发高能量密度的正负极材料是动力电池的研究方向之一。硅具有4 200 mA h·g~(-1)的超高理论比容量,是制备车用高能量密度型锂离子电池最有前景的负极材料之一。然而,硅在充放电反应中的剧烈体积变化严重阻碍了其商业应用。硅采用合金化反应方式储存锂离子,合金化反应在提供高比容量的同时伴随着300%的体积膨胀。剧烈的体积变化导致活性物质脱落、SEI膜持续形成等问题,进而导致实际使用时电池容量的快速衰减。此外,纯硅属于半导体,本征载流子浓度很低,无法满足电极对导电性的要求。解决上述问题最常用的方法有以下三种:(1)硅的纳米化。锂离子在固体中的扩散较为困难,在外加电场作用下,锂离子在硅中的扩散速度依然很慢。通过硅纳米化的方式可以缩短锂离子从硅表面到中心的扩散距离,有效缩短电池充电时间。(2)硅/碳复合。碳材料具有良好的循环稳定性和导电性,将硅与碳复合,碳可以缓冲硅在合金化反应中剧烈的体积变化,提高整个负极的电子电导率,外层碳壳能阻止硅和电解液的直接接触,形成稳定的SEI膜。(3)微观结构设计。中空核-壳结构、3D多孔结构等特殊结构可以缓解硅的体积膨胀效应,有效抑制电极材料的脱落。研究中经常综合使用上述三种方法来制备高性能纳米硅/碳负极材料,如3D多孔纳米硅/碳材料、中空核-壳纳米硅/碳材料等。本文先阐述了硅锂合金的电化学反应机理与容量衰减的原因,以及纳米硅的制备方法,然后从表面包覆、结构制备、掺杂、MOFs改性等方面对硅/碳复合材料的常见修饰方法进行了综述,并进一步分析了中空核-壳结构、多孔结构等在提高电化学性能上的优势。最后,本文总结了纳米硅/碳作为负极材料的优点与当前遇到的问题,归纳并分析了不同包覆材料、不同包覆方法和不同离子掺杂带来的性能差异及原因,提出未来纳米硅/碳产业化道路上的关键突破点,并展望了其在纯电动汽车领域的应用前景。  相似文献   

12.
硅基材料理论容量高、电位低、自然资源丰富,是最理想的锂离子电池负极材料。但是硅基负极在锂化和脱锂过程中巨大的体积变化,导致了硅基负极的循环稳定性与导电性差,阻碍了其实际应用。硅碳复合材料可将碳材料的高导电性和机械性能与硅基材料的高容量和低电位的优势相结合。综述了硅碳负极材料的主要制备方法,总结了硅碳复合材料的结构设计,并对未来碳硅材料的研究工作进行了展望。  相似文献   

13.
金属镁具有较高的理论体积比容量(3 833 mAh·cm-3)和较低的还原电位(-2.37 V vs.SHE),其作为镁电池负极具有能量密度高、安全性好且成本较低等优点。因此,可充镁电池是极具发展前景的新型二次电池体系。然而,可充镁电池的金属镁负极在充放电过程中易与电解液发生反应,形成阻碍Mg2+可逆沉积/溶解的致密钝化膜,导致较大的极化与较低的库伦效率;此外,镁负极与常规电解液的反应也会限制一些高性能正极材料的应用。本文围绕可充镁电池负极与电解液之间的相容性问题,总结了可充镁电池中负极材料及其界面调控方法等方面的研究进展,介绍了合金化负极材料与纳米/插层负极材料对改善可充镁电池循环性能的重要作用,并重点介绍了人工电解质界面膜和固态电解质对解决金属镁负极与电解液相容性问题的作用。此外,本文还从减少电解液副反应和调控钝化膜的角度,对提升可充镁电池负极与电解液相容性的研究重点与目标进行了总结和展望。  相似文献   

14.
以聚乙烯吡咯烷酮(PVP)作为高分子聚合物配体, 采用静电纺丝法制备了Si/C复合负极材料。利用PVP高温烧结形成的碳作为体积缓冲骨架, 有效地解决了硅在循环过程中的体积膨胀和粉化问题。采用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的晶体结构及微观形貌进行了研究。结果表明, 材料整体呈纤维状分布, 纤维直径300 ~ 400 nm, Si粒子以“麦穗状”均匀地分布在由无定形碳构成的纤维上。电化学测试结果表明, 复合材料首次充放电的不可逆容量为294.9 mAh/g, 是由于电极与电解液界面间固态电解质(SEI)膜的形成所致。另外, 复合材料在低倍率(0.1C、0.2C和0.5C)和高倍率(1.0C和2.0C)下均具有较高的库伦效率及较好的循环稳定性。  相似文献   

15.
锂离子电池高容量硅负极嵌锂过程中的表面成膜研究   总被引:1,自引:0,他引:1  
采用交流阻抗法、EDS与XPS成分分析对锂离子电池高容量硅负极在首次嵌锂过程中的表面成膜行为进行了研究, 并对膜组分进行了详细测试与分析. 交流阻抗分析发现硅负极的表面成膜现象出现在较低的嵌锂电位下, 膜厚随着嵌锂过程的进行而增加, 其组分以LiF和Li2CO3为主. 通过Ar离子流对硅负极表面的深度刻蚀的XPS分析发现, 其表面的膜层为非均质层, 暴露于电解液中一侧的膜层组分中碳酸盐含量较高, 而随着深度的增加, LiF的相对含量增加, 靠近电极一侧的膜层可能存在着少量硅的氧化物及其与电解液的反应产物. 少量Si由于不可逆反应形成的化合物也存在于SEI膜的膜层中.  相似文献   

16.
二次电池由于具有高能量密度、宽电化学窗口和高可逆性等特点,得到了广泛的应用,然而传统二次电池使用的有机电解液成本高,且存在易燃、有毒等安全隐患。与有机电解液相比,水系电解液具备离子电导率高、功率密度高、生产条件简单和成本低等优点。因此,使用中性或弱酸性水系电解液的新型二次水系电池受到了越来越多研究人员的关注。其中,金属锌具有储量丰富、无毒、过电位低(-0. 76 V)和理论容量高(820 mAh·g~(-1))等优点,使得水系可充电锌离子电池在大型储能系统中极具吸引力。然而,金属锌作为负极会存在一些缺陷:如锌枝晶、库伦效率低、利用率不足等。其中锌枝晶往往与锌沉积/溶解不均匀有关,而库伦效率低和利用率不足则与锌电极的析氢反应和生成不可逆副产物有关。目前,研究人员对水系锌离子电池负极材料的研究主要集中在以下四个方面:(1)优化锌电极结构,将锌负极的结构设计为三维、多孔型,为锌的沉积/溶解提供更多的位点并限制锌枝晶等产物的生成;(2)添加剂的应用,将无机物或有机物添加到负极材料中,改变锌的析氢电位、腐蚀电位、极化行为,降低锌的析氢腐蚀,减少副产物等;(3)添加功能保护层,不仅提高金属锌的耐蚀性,而且能够引导锌的均匀沉积/溶解,抑制锌枝晶的生长;(4)添加导电剂,将导电剂添加到锌负极中,一方面可以提高电极的导电性,另一方面也可以促进Zn~(2+)的均匀沉积/溶解。上述改性锌负极的方法能够有效抑制锌枝晶的生成,减少锌负极形变和提高金属锌的利用率,在一定程度上有效提高了水系锌离子电池的库伦效率和循环稳定性。本文首先简单介绍了水系锌离子电池的结构,然后重点阐述了目前对水系锌离子电池负极材料的研究进展,包括锌负极材料面临的挑战和优化策略等方面。最后,本文对水系锌离子电池负极材料的发展前景进行了展望,为制备出具有优异性能的锌负极材料提供重要思路。  相似文献   

17.
锂金属电池被认为是最具潜力的高能量密度储能器件之一,但是锂金属电池负极低库仑效率及不可控的枝晶生长等问题阻碍了其商业化进程.在锂金属电池中,电解液会直接参与固态电解质界面膜(SEI)的形成,对锂金属负极的库仑效率、枝晶生长等产生重要影响.传统LiPF6基酯类电解液中,锂金属库仑效率低,且锂枝晶现象严重.近年来通过电解液添加剂、溶剂、锂盐以及锂盐浓度等途径调控电解液化学,在锂金属负极保护上取得了显著效果.例如,采用与锂金属负极兼容性更佳的醚类溶剂,可以降低电解液与锂金属的反应性;采用多种添加剂与新型锂盐复配可以有效抑制锂枝晶的形成;采用高浓度锂盐电解液,可以形成稳定SEI膜等.本文综述了锂枝晶的生长原理以及通过溶剂、锂盐、添加剂和高浓度电解液等策略调控电解液化学保护锂金属电池负极的研究现状,总结了各种途径的优势及局限性.并对锂金属电池电解液的发展提出了新的见解,以激发新的策略面对锂金属电池后续的挑战.  相似文献   

18.
硅作为锂离子电池负极材料具有极高的比容量,被认为是最有应用潜力的下一代锂离子电池负极候选材料。本文系统总结了硅负极材料的电化学储锂特性和储锂机理,分析了硅负极材料存在的主要问题及原因。针对存在的问题,从嵌脱锂过程硅材料粉化调控、稳定固体电解质界面膜(SEI膜)的构建和硅材料导电性调变3方面对硅负极材料的电化学改性进展进行了评述,并指出了硅负极储锂材料今后的研究方向。  相似文献   

19.
硅材料由于具有很高的理论比容量(4200 mAh·g-1)而成为下一代锂离子电池的关键负极材料之一,但是其在嵌/脱锂过程中会产生巨大的体积变化,使电极的循环性能变差.黏结剂作为电极的主要成分之一承担着连接电极组分、维持电极结构稳定的重要作用,使用合适的黏结剂对于改善硅基负极的循环稳定性至关重要.带有极性官能团的水系黏结剂由于可以有效改善硅基负极的电化学性能而成为现在的研究热点.本文综述硅基负极水系黏结剂的研究进展,首先对单一线性结构黏结剂的性质进行归纳总结.在此基础上,对具有三维网状结构的复合黏结剂的研究进展进行重点介绍,详细讨论不同类型三维网状黏结剂的结构和性能特点,以及应用于硅基负极时对电极性能的改善效果.最后,提出硅基负极水系黏结剂所应具备的特性,旨在为硅基负极水系黏结剂的开发和选择提供思路.  相似文献   

20.
姚诗言  曾立艳  刘军 《材料导报》2022,(16):192-202
锂离子电池(LIBs)作为目前使用最广泛的二次电池,绝大多数以理论比容量较低的石墨(372 m Ah/g)为负极,已无法满足人们日益增长的对电池储能性能的要求。金属锂因其超高的理论比容量(3 860 m Ah/g)和最低的还原电势(-3.04 V,相比于氢标准电极)被看作是下一代高能量密度可充电锂电池最理想的负极材料。尤其是当金属锂与硫、氧组成锂-硫或锂-氧电池体系时,其理论能量密度远超锂离子电池,受到研究者的广泛关注。然而,库伦效率低和稳定性差一直是限制锂金属电池商业化应用的关键因素。当金属锂直接用作电池负极时,其易与电解液反应,在其表面形成一层脆弱的固态电解质中间相(SEI)膜。电池循环时,负极体积膨胀会破坏SEI膜,诱导锂枝晶和“死锂”形成,造成不可逆的容量损失。此外,锂枝晶生长至一定程度后会刺穿隔膜,导致电池内部短路甚至发生爆炸,引发严重的安全问题。为了解决上述问题,研究者们在锂金属负极失效机制、结构设计及界面强化等方面进行了许多探索。一些研究枝晶生长的理论模型如Chazalviel-Brissot模型、Yamaki模型和静电屏蔽模型等已受到广泛认可。在此基础上,研究者们尝试通...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号