首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analysis of the performance of a solar water heating system with natural thermosyphon circulation between the collector and the storage tank. The analysis is based on the formulation by Ong except that provision for withdrawal of hot water from the tank (for domestic/ industrial use) has been made in the energy balance equation; further in contrast to the use of the finite difference method by Ong, explicit expressions have been obtained. The results of the present analysis (in the absence of withdrawal of hot water from the tank) are seen to be in better agreement with experiments than the corresponding results of Ong, obtained by use of the finite difference method.

Numerical results, corresponding to hot water retrieved from the storage tank, have been presented for two modes of hot water withdrawal viz. the constant flow rate and constant mean storage tank water temperature.  相似文献   


2.
This paper presents a transient analysis of a solar water heating system with forced circulation. Two modes of hot water retrieval have been taken into account viz direct from the tank and through a heat exchanger placed in the tank. Analysis has been presented both for constant flow and constant collection temperature modes. Effects of heat exchanger length and time of starting hot water retrieval on the system performance have also been studied. Numerical calculations have been made for a typical cold day (26 January, 1980) at Delhi.  相似文献   

3.
The aim of this paper is to focus on improvement in prediction accuracy of model for thermosyphon solar water heating (SWH) system. The work employs grey-box modeling approach based on fuzzy system to predict the outlet water temperature of the said system. The prediction performance results are compared with neural network technique, which has been suggested by various researchers in the last one decade. The outlet water temperature prediction by fuzzy modeling technique is analyzed by using 3 models, one with three inputs (inlet water temperature, ambient temperature, solar irradiance), next with two inputs (inlet water temperature, solar irradiance) and last one with single input (solar irradiance/inlet water temperature). An improved prediction performance is observed with three inputs fuzzy model.  相似文献   

4.
This paper focuses on pump flow rate optimization for forced circulation solar water heating systems with pipes. The system consists of: an array of flat plate solar collectors, two storage tanks for the circulation fluid and water, a heat exchanger, two pumps, and connecting pipes. The storage tanks operate in the fully mixed regime to avoid thermal stratification. The pipes are considered as separated components in the system so as to account for their thermal effects. The objective is to determine optimal flow rates in the primary and secondary loops in order to maximize energy transfer to the circulation fluid storage tank, while reaching user defined temperatures in the water storage tank to increase thermal comfort. A model is developed using mainly the first and second laws of thermodynamics. The model is used to maximize the difference between the energy extracted from the solar collector and the combined sum of the energy extracted by the heat exchanger and corresponding energies used by the pumps in the primary and secondary loops. The objective function maximizes the overall system energy gain whilst minimizing the sum of the energy extracted by the heat exchanger and corresponding pump energy in the secondary loop to conserve stored energy and meet the user requirement of water tank temperatures. A case study is shown to illustrate the effects of the model. When compared to other flow control techniques, in particular the most suitable energy efficient control strategy, the results of this study show a 7.82% increase in the amount of energy extracted. The results also show system thermal losses ranging between 5.54% and 7.34% for the different control strategies due to connecting pipe losses.  相似文献   

5.
In this note an analysis of an inverted flat plate solar collector has been presented. Effect of various parameters, namely thickness of the insulation, air conductance between flowing water and top of the bottom insulation, length of the collector and flow velocity of water on the performance of the collector have been studied. Numerical calculations have been made for typical cold day in Delhi, namely 26 January 1980.  相似文献   

6.
This communication presents an analysis of the thermal performance of a hot water system consisting of N collectors in series with a storage tank; forced circulation and withdrawal of hot water by displacement with cold water are built into the thermal model. Two modes of withdrawal of hot water, viz. (i) constant flow rate and, (ii) constant hot water temperature (during the day), have been considered. For a quantitative appreciation of the results, numerical calculations have been made for the two modes of hot water withdrawal corresponding to a typical cold day (26 January, 1980) in Delhi.  相似文献   

7.
Based on a simple transient analysis, an explicit expression for the temperature of air, flowing through the channel of a suspended flat-plate solar air heater, has been developed as a function of time and space co-ordinates. Investigations regarding the effect of various parameters, such as air velocity, air channel depth and inlet air temperature, on the performance of the system have been carried out under two modes of operation; (1) the time is kept constant while the space co-ordinate along the flow direction is varied, and (2), the latter is kept constant while the former is varied.  相似文献   

8.
A straightforward analysis of a solar water heating system with n-tanks connected in series has been presented. The long-term performance of the system has also been studied. On the basis of numerical calculations made for four successive days, the following conclusions have been drawn:
1. (1) The fluctuation in temperature variation decreases with increase of the number of tanks connected in series.
2. (2) The variation becomes smooth after the second successive day, which is more desirable from the point of view of users.
  相似文献   

9.
A generalized model for a forced circulation solar water heating system with storage tanks in series is presented in which the loss of heat through an insulation lagging is considered, and the periodic time variation of the intensity of solar radiation, as well as both the ambient air temperature and the temperature of cold water entering the first main tank, is taken into account. Using the Laplace transformation, an exact solution is presented which, under certain conditions, reduces to an approximate solution. The conditions for convergence to the approximate solution are discussed, and figures are presented comparing it with the exact solution for several different sets of conditions. In this communication, the effect of the number of storage tanks on the outlet temperature of the hot water and the effect of various water heating system parameters on its performance have been analytically investigated. Numerical calculations have been made for a typical cold day.  相似文献   

10.
A simple mathematical model has been developed to evaluate the technoeconomic performance of a hybrid solar water heating system for commercial and industrial applications. Numerical calculations, corresponding to Delhi climatic data and for the prevalent cost of a solar energy system in the Indian market, show that the optimum collector area (meeting nearly 45 percent of the daily hot water demand M litres) is 0–0075 Mm2; either a reduction of about 35 per cent in the present solar collector costs or a more than 20 per cent rise in the cost of presently subsidized diesel oil makes the solar option economic. With the present parameters the cost of useful solar energy is higher than that obtained from the conventional system.  相似文献   

11.
The effect of solar radiation availability on the performance of different solar heating systems has been studied. The systems include a solar water heater, passive solar houses and district solar heating systems with seasonal heat storage. Also, different collector orientations and collector types have been investigated. The hourly radiation data were generated by a simple computational simulation procedure. It was found that district solar heating systems with concentrating collectors and passive solar houses showed the largest variations for the given conditions.  相似文献   

12.
A study is made for comparing the maximum seasonal energy yield obtainable by solar collectors for space heating application. Different glazing combinations with glass and plastic as glazing materials are considered. The study is made for four different locations. The performance of eight glazing combinations with covers ranging in number from one to three is compared to obtain the optimum combination for each location. The results show that selecting the optimum glazing combination improves the performance significantly. In general, plastic covers give higher yield. The study confirmed that the use of two covers is justified in cold, cloudy climates while a single cover is suitable for temperate climates. In most cases three covers lead to a significant reduction in the yield. Replacing plastic by glass as a top cover for longer life results in a small yield reduction. Some of the other conclusions are that the ratio of average to normal transmittance-absorptance product changes significantly with location and month of the year. However, the seasonal average value of this ratio is almost constant for any number of covers but changes with location.  相似文献   

13.
An indirect forced circulation solar water heating systems using a flat-plate collector is modeled for domestic hot water requirements of a single-family residential unit in Montreal, Canada. All necessary design parameters are studied and the optimum values are determined using TRNSYS simulation program. The solar fraction of the entire system is used as the optimization parameter. Design parameters of both the system and the collector were optimized that include collector area, fluid type, collector mass flow rate, storage tank volume and height, heat exchanger effectiveness, size and length of connecting pipes, absorber plate material and thickness, number and size of the riser tubes, tube spacing, and the collector’s aspect ratio. The results show that by utilizing solar energy, the designed system could provide 83-97% and 30-62% of the hot water demands in summer and winter, respectively. It is also determined that even a locally made non-selective-coated collector can supply about 54% of the annual water heating energy requirement by solar energy.  相似文献   

14.
The present paper deals with an analysis of a forced circulation closed loop solar water heating system; withdrawal of hot water of constant flow rate from a storage tank through a heat exchanger is considered. The effect of flow rate and heat exchanger length on the performance has also been discussed for a typical set of parameters and for a typical cold day in Delhi (26 January 1980).  相似文献   

15.
A performance study of forced circulation solar water heaters using packed-bed solar collectors is presented. Iron chips, gravel and stones have been used as packing materials. Thermal energy stored in the tank, system overall efficiency and pay-back capital for these solar water heaters are compared with those for solar water heaters using a plane collector. It is observed that the performance of the solar water heater is improved appreciably by packing its collector with packing material. A solar water heater using an iron chip, packed-bed collector shows the best performance.  相似文献   

16.
Two large solar water heating systems (non-pressure type), each having 1000-1. capacity, have been installed at IIT New Delhi and their performances have been studied under the thermosyphon mode between the collectors and the storage tank. A simple transient analysis of the system, incorporating the effect of withdrawal of hot water from the storage tank, has been developed. The effect of stratification in the storage tank has been studied experimentally. It is found that the experimental observations are in good agreement with the theoretical results obtained by the present model.  相似文献   

17.
In addition to the solar water heating (SWH) system, other domestic water heating systems used in Jordan were considered in terms of benefits and costs using the Analytic Hierarchy Process. In terms of cost, the SWH system was the least expensive. On a percentage basis, the SWH cost about 13% compared to the most expensive heating system, LPG, of about 28%. In terms of benefits, the SWH was also the most beneficial. Approximately, the SWH benefits were about 31%, while the least benefits were obtained from the kerosene water heating system, which is about 9%. By considering both cost and benefit (i.e. cost-to-benefit ratio), solar was also the least expensive, about 7%, with kerosene being the most expensive, over 30%.  相似文献   

18.
As a modified building-integrated solar thermal system, building-integrated dual-function solar collector here proposed is able to provide passive space heating in cold winter, and water heating in warm seasons. In this study, evaluations were made on this modified collector system for the warm period operation under the water heating mode with natural circulation of flow. A dynamic numerical model has been developed and validated by experimental data. Based on practical air-conditioned room design conditions, numerical analysis was performed to study the water heating performance, as well as to compare the solar transmission through building facade in different seasons with or without its presence. The results show that when working in the water heating mode, the system performs well in providing services hot water in the warm seasons without bringing in summer overheating problem.  相似文献   

19.
This study includes design and experimental analysis of a solar domestic water heating system. Water heating systems with glazed and unglazed collectors were constructed and tested at Dhaka, Bangladesh, at a latitude of 23.7 °N. Collector thermal efficiency and capability of raising water temperature were considered as performance evaluation measures. A typical day analysis showed that collector efficiency varied with time and touched its peak at around 12:00 h. During testing, the efficiency of the glazed collector increased by about 70.3% when compared with the unglazed collector. Average collector efficiency over the whole test period was also estimated to be 57.3% and 33.7% for glazed and unglazed collectors, respectively. Maximum water temperatures measured at daytime user outlets were, respectively, 82.4 °C and 65.5 °C for domestic water heating systems with glazed and unglazed collectors and approximated to be 49 °C and 32 °C higher than the ambient temperature. The glazed collector eventually offered significantly higher performances over the unglazed collector in improving system performance.  相似文献   

20.
This paper presents the effect of off-south orientation on the performance of flat plate solar collectors. This study is done, taking into consideration the building's off-south orientation. The present work investigates collector performance and optimum tilt as functions of the off-south angle, collection temperature, latitude and wind velocity. The three latitudes considered are of New Delhi(L = 28.38°N), Bangalore (L = 12.97°N) and Madras (13.0°N). It has been found that, for the best average winter performance, the tilt is latitude angle +15°, whereas, for the best average summer performance, it is latitude angle ?15°. It has also been confirmed that, for year round operation, the maximum solar energy is collected when the tilt is 0.9 times the latitude angle. Further, it has been noticed that there is an optimum value of collector tilt for a given azimuthal angle at which yearly effectiveness is a maximum. The effect of increase in off-south angle is to decrease the yearly effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号