首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast lithium ionic conducting glass-ceramics have been obtained by heat-treatment of glasses in the systems Li2O–M2O3–TiO2–P2O5 (M = Al and Ga). The glass–ceramics were mainly composed of LiTi2(PO4)3 in which Ti4+ ions were partially replaced by M3+ ions. Considerable enhancement of the conductivity with the substitution of M3+ ions for Ti4+ ions was observed. The maximum conductivity obtained at room temperature was 1.3 × 10–3 S cm–1 for the aluminium system and 9 × 10–4 S cm–1 for the gallium system.  相似文献   

2.
K2TiNb2P2O13single crystals (monoclinic structure, a= 13.788 Å, b= 6.418 Å, c= 16.927 Å, = 97°) were grown from off-stoichiometric K2O–TiO2–Nb2O5–P2O5melts, and their habit was described. The 300°C electrical conductivity of the crystals was determined to be 5 × 10–4S/cm.  相似文献   

3.
The electronic conductivity of Na2O · nAl2O3–Y2O3 materials is found to vary from 10–5 to 10–1 S/m between room temperature and 800°C and to increase from 10–5 to 10–4 S/m as the frequency increases from 100 Hz to 200 kHz. The temperature variation of conductivity is interpreted in terms of the energy band structure.  相似文献   

4.
Electrical conductivities, , of the Li2O-La2O3-SiO2 glasses were investigated as functions of Ta2O5 doping and Ta ion-implantation. A linear relationship between logarithm and the inverse of the sample temperature, T, was found in 2 to 4 mol% Ta2O5 doped Li2O-La2O3-SiO2 glasses. The conductivity increases as Ta2O5 content increases at sample temperatures above 100°C. Fluences of 50 keV Ta ions per cm2 from 5 × 1016 to 2 × 1017 were implanted into 0% and 2% Ta2O5 containing Li2O-La2O3-SiO2 glass samples. The activation energy of the conductivity was deduced from the relation between log and 1/T. It was found in implanted samples that the conductivity increased, but the activation energy and T k–100 decreased, where T k–100 is the sample temperature when the conductivity reaches 100 × 10–1 S/cm. However, the Ta2O5 containing implanted samples show higher conductivities, lower activation energies and lower T k–100. X-ray photoelectron spectroscopy (XPS) was used to study the structural modification introduced by implantation. Bridging oxygen (BO) and non-bridging oxygen (NBO), were observed in all samples. The changes in relative concentrations of BO and NBO before and after implantation clearly indicate the structure modification which results in the increase of the conductivity. It was clearly demonstrated in this study that both doping Ta2O5 and implanting Ta ions enhance the conductivity of Li2O-La2O3-SiO2 electrode glasses.  相似文献   

5.
In the superionic conducting quarternary system Agl-Ag2O-V2O5-P2O5, the best ionic conductivity was obtained for the composition 66.6% Agl-33.3% (2Ag2O-1 (V2O5-P2O5)), when the GF/GM ratio was varied from 0.20 to 5.0. Then fixing the GF/GM ratio at 0.50, the ratio of the glass formers V2O5 and P2O5 were varied and the highest conducting composition was obtained as 66.6% Agl-22.2 Ag2O-11.1% (0.8 V2O5-0.2 P2O5). A preliminary investigation using this material in the form of an electrolyte in a solid state electrochemical cell is reported. The polycrystalline and amorphous compounds were prepared from the same melt, by open air crucible melting and the rapid quenching technique. The ionic conductivity for the best conducting polycrystalline (hence referred as 66VP82P) and amorphous (66VP82G) samples was obtained as 8.3 × 10–3 and 4.2 × 10–2 –1 cm–1 respectively. The electronic conductivity of the order 10–10 –1 cm–1 was observed for 66VP82G and 10–8 –1 cm–1 for 66VP82P samples. Thermoelectric power studies revealed that the charge carriers are the Ag+ ions, with an activation energy of 0.288eV for 66VP82G, which correlated well with the activation energy obtained from the conductivity measurements. The dielectric constant, dielectric loss and the loss tangent were calculated for both polycrystalline and glassy 66VP82 material. It was observed that the dielectric loss is more for the glassy material than the polycrystalline material. Solid state galvanic cells with 66.6% Agl-22.2% Ag2O-11.1% V2O5, 66.6% Agl-22.2%-Ag2O-11.1% P2O5 and 66.6% Agl-22.2% Ag2O-11.1% (0.8 V2O5-0.2 P2O5) (coded as 66V, 66P and 66VP82 respectively) electrolytes were constructed. Both polycrystalline and amorphous electrolyte cells were fabricated for a comparative study and the polarization effects were observed to be negligible in amorphous cells. The variation of open circuit voltage with temperature was reported and the current discharge curves indicate that the 66VP82 material has higher current capacity with high current drain when compared to 66V and 66P cells.  相似文献   

6.
Data are presented on the evolution of the pyrochlore structure in the Ln2+x Hf2?x O7?δ (Ln = Sm, Eu; x = 0.096) solid solutions and Ln2Hf2O7 (Ln = Gd, Tb) compounds prepared from mechanically activated oxide mixtures. Sm2.096Hf1.904O6.952 is shown to undergo pyrochlore-disordered pyrochlore-pyrochlore (P-P1-P) phase transformations in the temperature range 1200–1670°C. The former transformation leads to a rise in 840°C conductivity from 10?4 to 3 × 10?3 S/cm in the samples synthesized at 1600°C, and the latter leads to a drop in 840°C conductivity to 6 × 10?4 S/cm in the samples synthesized at 1670°C. The reduction in the conductivity of Sm2.096Hf1.904O6.952 is accompanied by the disappearance of the assumed superstructure. In the range 1300–1670°C, Eu2+x Hf2?x O7?δ (x = 0.096) and Ln2Hf2O7 (Ln = Gd, Tb) have a disordered pyrochlore structure. The highest 840°C conductivity is offered by Eu2.096Hf1.904O6.952, Gd2Hf2O7, and Tb2Hf2O7 synthesized at 1670°C: 7.5 × 10?3, 5 × 10?3, and 2.5 × 10?2 S/cm, respectively.  相似文献   

7.
Silverphosphotellurate (SPT) quaternary fast ionic conducting (FIC) glasses of compositions AgI-Ag2O-[(1 – x)P2O5 + xTeO2], x = 0.0 to 1.0 in steps of 0.1, were prepared by melt quenching. All SPT compounds were characterized by X-ray diffraction and the amorphous nature of the samples was confirmed. The structure of all compositions was examined by Fourier Transform Infrared Spectroscopy. The glass transition temperature (T g) was determined for all SPT samples, using differential scanning calorimetry. Complex impedance measurements were made on all glasses in the frequency range 40 Hz to 100 kHz. Impedance data were analyzed using Boukamp equivalent circuit software and the bulk conductivity was obtained. The highest conductivity ( = 1.59*10–2 S/cm) was shown by the composition 60%AgI – 26.67%Ag2O – 13.33% (0.3P2O5 + 0.7TeO2).  相似文献   

8.
The iron behaviour in phosphate/water/polyethylene glycol (PEG) was studied in-situ and ex-situ by spectrometry Raman, ESCA spectroscopy, X-ray diffraction, Auger spectroscopy were used as surface analysis methods. It changes with phosphate concentration. At low phosphate concentration (5 × 10–4 M-10–3 M-5 × 10–3 M), iron is corroded. The thin corrosion layer is a mixture of iron oxides (-Fe2O3, Fe3O4) and iron phosphate(Fe3(PO4)2, 8H2O). At high phosphate concentration (10–2 M-5 × 10–2 M), the iron is protected. The protection could be due to an heterogenous layer containing PEG 400 and phosphates.  相似文献   

9.
Single crystals of K x (Zn y T8–y O16 priderites have been grown from a melt of K2O-MoO3 using the flux-zone technique. High-purity crystals > 10 mm in length were obtained, with no indication of twinning. Lattice parameters of a=1.0162(8) nm and c=0.2971(7) nm were obtained from X-ray diffraction measurements. Habit planes were identified from scanning electron microscope images. X-ray photoelectron spectroscopy confirmed the titanium oxidation state as +4. High-temperature complex impedance spectroscopy between 300 and 820 K was used to electrically characterize the crystals. This indicated that the materials had a low d.c. conductivity and a conductivity of 1.68×10–3 S cm–1 at 100 kHz.  相似文献   

10.
The electrical conductivity of Ln2 + x Zr2 − x O7 − x/2 (Ln = Sm-Gd) solid solutions prepared from mechanically activated Ln2O3 and ZrO2 is shown to correlate with their structural properties. In the three systems, the x-T regions are determined in which electrical transport is dominated by oxygen-ion conduction. In the Sm2O3-ZrO2 system, ionic conductivities from 5 × 10−4 to 6 × 10−3 S/cm at 740°C are found in Sm2 + x Zr2 − x O7 − x/2 with 26.6, 33.3, 35.5, 37, and 40 mol % Sm2O3 prepared at 1450, 1530, and 1600°C. Eu2 + x Zr2 − x O7 − x/2 and Gd2 + x Zr2 − x O7 − x/2 containing 33.3 to 37 mol % Ln2O3 have 740°C ionic conductivities of 10−3 to ∼7.5 × 10−3 and 10−3 to 7 × 10−3 S/cm, respectively. The activation energy of conduction in Ln2 + x Zr2 − x O7 − x/2 (Ln = Sm-Gd), E a = 0.84–1.04 eV, increases with the atomic number of Ln and x. The highest ionic conductivity is offered by the stoichiometric Ln2Zr2O7 (Ln = Sm-Gd) pyrochlores prepared at 1600°C, owing to the optimal concentration of LnZr + ZrLn antistructure pairs (∼5–22%). The grains in the ceramic samples studied range in size from 0.5 to 2 µm.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 8, 2005, pp. 975–984.Original Russian Text Copyright © 2005 by Shlyakhtina, Kolbanev, Knotko, Boguslavskii, Stefanovich, Karyagina, Shcherbakova.  相似文献   

11.
The high-temperature (>1600°C) order—disorder phase transition of Tm2Ti2O7 is shown to be irreversible. The 740°C ionic conductivity of nanocrystalline Tm2Ti2O7 ceramics synthesized at 1670°C is 2 × 10-3 S/cm and remains unchanged upon heat treatment in air at 860°C for 240 h. The conductivity of the high-temperature (disordered pyrochlore) phase of Tm2Ti2O7 is independent of grain size in the range 20–30 nm.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1495–1500.Original Russian Text Copyright © 2004 by Shlyakhtina, Knotko, Larina, Borichev, Shcherbakova.  相似文献   

12.
Polyurethanes with linear, hyperbranched and comb-crosslinked structures were synthesized and were used to prepare solid polymer electrolytes. The polymer electrolytes were characterized by means of Fourier transform Raman spectroscopy, impedance spectroscopy (IS) and atomic force microscopy (AFM). The results showed that salt concentration significantly influences the morphology and conductivity of the three kinds of polyurethane/LiClO4 system. When the mole ratios of the ether oxygen atom to lithium ion were controlled to be 12, 4 and 4 respectively for linear, hyperbranched and comb cross-linking polyurethane, the electrolytes typically displayed micro-phase separated morphology and the ionic conductivity also reached maxima respectively at 2.2 × 10–7 S/cm, 2.8 × 10–6 S/cm and 2.8 × 10–5 S/cm at room temperature.  相似文献   

13.
New oxygen-ion conductors Ln2 + xTi2 – xO7 – x/2 (Ln = Dy–Lu, x = 0.132) with a disordered pyrochlore structure are obtained. Their ionic conductivity attains 10-3 S/cm at 740°C, owing to the presence of defects in both the cation and anion sublattices. The materials contain ~5% LnTi antisite defects. Ln2.132Ti1.868O6.934 ceramics are shown to be stable in the temperature range 1600–1700°C.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1501–1504.Original Russian Text Copyright © 2004 by Shlyakhtina, Mosunov, Stefanovich, Karyagina, Shcherbakova.  相似文献   

14.
A series of redox studies of vanadium have been carried out in CaO-SiO2, CaO-MgO-SiO2 and CaO-Al2O3-SiO2 melts/slags equilibrated over oxygen partial pressures (pO2) range 10–2–10–9 atm at 1600°C. V2O5 level was varied from 1–5 mol%. Three different melt basicities and alumina contents were investigated. Magnesia content was varied between 3.5 and 4.9 wt%. A newly developed analytical technique based upon electron paramagnetic resonance (EPR) spectroscopy was successfully applied to these melts. Two redox equilibria corresponding to V3+/V4+ and V4+/V5+ pairs followed the O-type redox reaction over the oxygen partial pressure range investigated. Higher oxidation states of vanadium were stabilized with increasing basicity of slags. Two redox pairs coexisted within oxygen pressure region 10–4–10–6 atm. However, redox ratios did not indicate clear trends with increasing V2O5 content in CaO-SiO2-V2O5 system. In CaO-SiO2-Al2O3-V2O5 slags, a slight increase in redox ratios (V3+/V4+) was obvious when alumina quantity was changed from 3.22 to 5.44% at a basicity ratio 1.3, indicating an increase in slag acidity. CaO-MgO-SiO2-V2O5 slags showed a sharp decrease in redox ratios (V4+/V5+) between 10–2–10–6 atm with addition of 3.5 wt% MgO, due to increasing free oxygen ions in slags.  相似文献   

15.
Large single crystals of La2–2x Sr1+2x Mn2O7 (x=0.3 to 0.525) have been prepared under controlled atmospheric conditions. The crystals were grown by the floating-zone technique in an image furnace under a mixed oxygen/argon atmosphere pressurized to 6–8×105 Pa. Rectangular single crystals with sizes up to 50×9×4 mm3 have been obtained. The phase-purity, composition, and quality of the crystals were analyzed by X-ray diffraction and electron probe microanalysis. The magnetic behavior is found to be sensitive to the composition of the atmosphere during growth.  相似文献   

16.
Lattice and grain-boundary interdiffusion coefficients were calculated from the concentration distributions determined for Zr-Hf interdiffusion in polycrystalline 16Y2O3·84(Zr1–x Hf x )O2 withx=0.020 and 0.100. The lattice interdiffusion coefficients were described byD=0.031 exp [–391 (kJ mol–1)/RT] cm2 sec–1 and the grain-boundary diffusion parameters byD=1.5×10–6exp [–309(kJ mol–1)/RT] cm3 sec–1 in the temperature range 1584–2116° C. Comparison of the results with those for the systems CaO-(Zr+Hf)O2 and MgO-(Zr+Hf)O2 indicated that the Zr self-diffusion coefficient was insensitive to the dopants in the fluorite-cubic ZrO2 solid solutions.  相似文献   

17.
Amorphous films of the V2O5-CaO-MoO3 system are fabricated by r.f.-sputtering and the d.c. conductivity and optical properties are studied. The conductivity of 1200–1400 nm thick amorphous V2O5-CaO-MoO3 films with different film compositions ranges from 4.7 × 10–4 to 1.1 S cm–1 at 458 K. The films are n-type semiconducting. The conduction of the films is attributed to adiabatic small polaron hopping and is primarily due to hopping between V4+ and V5+ ions. The films are optically transparent in the visible range. The optical band gap energy is evaluated to be between 2.90 and 2.39 eV. The Urbach tail analysis gives the width of localized states between 0.40 and 0.58 eV. A feasibility study reveals the films to be applicable as transparent film thermistors.  相似文献   

18.
A number of zirconia-based materials show promise as electrode materials in magnetohydrodynamic (MHD) generators. As a part of an exploratory programme to find suitable materials for graded electrode applications in MHD generators, partially stabilized and fully stabilized sintered ceramic materials are prepared and characterized. The oxygen ion transference number t ion(O2–) and electrical conductivity of this material are measured up to 1670 K in the oxygen partial pressure range 1 to 10–6 atm. The activation energies for conduction are determined. The electrical properties of this material are characterized by mixed conduction, ionic and electronic. The observed conductivity data are explained in terms of the defect equilibrium reactions between tetravelent Ce4+ and trivalent Ce3+ ions.  相似文献   

19.
The electrical conductivity, thermoelectric power and dielectric constant of Eu2Ti2O7 single crystal have been studied in the temperature range 300–1000 K. Eu2Ti2O7 is found to be a n-type semiconductor with energy band gap of 2.5 eV. The compound exhibits an extrinsic nature upto 700 K and intrinsic nature above 700 K. Thermoelectric power decreases with temperature in the region 300–700 K whereas it increases with temperature in the region 700–1000 K. Dielectric constant increases with temperature in the entire temperature range studied with a discontinuity atT 700 K.  相似文献   

20.
Tl2Ta2(PO4)2(HP5O16) is synthesized at 400°C in molten polyphosphoric acids containing Tl, Ta, and P in the ratio 4 : 1 : 15, and its crystal structure is determined: monoclinic cell, a = 5.1469 Å, b= 18.451 Å, c = 10.793 Å, = 95.65°, Z = 2, sp. gr. P21/m. The framework of the structure is made up of monophosphate and hydrogen pentaphosphate groups which share corners with TaO6 octahedra. The Tl atoms reside in infinite channels. Neighboring pentaphosphate groups are hydrogen-bonded. In the range 60–350°C, the compound has a rather high ionic conductivity, which is tentatively attributed to proton transport. The activation energy of conduction is 48 ± 1 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号