首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074 mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧—弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

2.
崔强  肖婉琴  郑桂兵 《金属矿山》2016,45(12):48-50
国外某褐铁矿石铁品位为54.12%,褐铁矿多呈疏松、多孔的胶状分布,少部分呈块状或鲕状分布。采用单一浮选和重选工艺不能获得合格铁精矿。为给该矿石开发利用提供依据,进行了磁化焙烧—磨矿—磁选试验,考察了焙烧温度、焙烧时间、烟煤用量、磨矿细度、磁场强度对精矿指标的影响。结果表明:在烟煤用量为15%、焙烧温度为850℃、焙烧时间为60 min,焙烧产品自然冷却后经球磨磨细至-0.074 mm占90%,在磁场强度为160 k A/m条件下弱磁选,可获得铁品位为64.65%、回收率为86.05%的精矿。  相似文献   

3.
贵州某褐铁矿石为低硫磷褐铁矿石,铁品位为47.14%,铁矿物主要有褐铁矿,纤铁矿、硬锰矿、软锰矿、黄铁矿少量,褐铁矿呈不规则胶状、土状分布,与脉石矿物共生关系密切,磨矿过程不仅难以实现有用矿物与脉石矿物的有效分离,而且容易泥化,因而直接强磁选或重选均难以获得理想的分选指标。为解决该褐铁矿石资源的开发利用问题,采用磁化焙烧—磁选工艺对该矿石进行了选矿试验。结果表明,在无烟煤(2~0 mm)与矿样(3~0 mm)质量比为5%,焙烧温度为850℃,保温时间为40 min,焙烧产物的磨矿细度为-0.074 mm占97.5%,中磁选磁场强度为218.95 kA/m情况下,可获得铁品位为66.23%、铁回收率为97.53%的铁精矿。  相似文献   

4.
宣龙式鲕状赤铁矿石磁化焙烧—弱磁选试验   总被引:1,自引:0,他引:1  
宣龙式鲕状赤铁矿石铁品位较高,达48.65%,主要铁矿物为赤铁矿,占总铁的85.84%,其次是碳酸铁,占总铁的9.50%,磁性铁含量较低,仅占总铁的3.12%;脉石矿物主要为石英,磷、铝等有害元素含量均不高。为探索该资源的高效、低耗开发利用方案,采用磁化焙烧—弱磁选工艺进行了选矿试验研究。结果表明,0.2~0 mm的烟煤与-0.074 mm占62%的试样按质量比12%混合,在800℃下焙烧45 min,焙烧产物磨至-0.074 mm占89.2%的情况下进行弱磁选(磁场强度为105.6 k A/m),可得到铁品位为62.50%、铁回收率为85.50%的铁精矿。因此,磁化焙烧—弱磁选工艺适合处理宣龙式鲕状赤铁矿石。  相似文献   

5.
为确定贵州某褐铁矿的开发利用方案,进行了磁化焙烧—弱磁选工艺技术条件研究。结果表明,在煤粉添加量为8%、焙烧温度为850℃、焙烧时间为60 min、焙烧产物磨矿细度为-0.074 mm占75%、弱磁选磁场强度为151.27 kA/m情况下,采用1粗1精1扫、中矿集中返回流程处理该矿石,可获得铁品位为61.14%、铁回收率为89.80%的铁精矿。  相似文献   

6.
某褐铁矿原矿铁品位39.28%,其中褐铁矿矿物含量占73.86%,具有一定的回收价值。以焦煤为还原剂,采用磁化焙烧-磁选的工艺回收其中的铁,试验主要考察了磁化焙烧温度、时间、还原剂加入量、磨矿细度、磁场强度对铁精矿选别指标的影响。确定最佳工艺条件为:磁化焙烧温度800℃,焦煤加入量4%,焙烧时间40 min,焙烧样磨矿至-0.037 mm 90%,磁场强度设置192 KA/m进行磁选,最终可获得磁选精矿铁品位59.76%、铁回收率73.31%的良好指标。  相似文献   

7.
某低品位复杂难选铁矿,铁主要以褐铁矿形式存在,褐铁矿与脉石矿物紧密共生,导致强磁选精矿铁品位偏低,难以获得合格铁精矿。通过试验发现,采用高梯度强磁选预富集—流态化磁化焙烧—弱磁选工艺可以高效利用该褐铁矿,重点考察了焙烧温度、焙烧时间、还原气氛和气量,以及焙烧产品磨矿细度、磁感应强度等参数对强磁精矿磁化焙烧指标的影响。同时,详细分析了焙烧前后试样中铁物相及嵌布特征的变化情况。结果表明,针对铁品位36.58%、粒度为-0.074 mm占83.73%的强磁精矿,在焙烧温度500℃、焙烧时间15 min、还原气体CO浓度20%、总气量600 mL/min,焙烧产品磨矿细度为-0.043 mm占90%、磁场强度0.15 T的试验条件下,采用流态化磁化焙烧—弱磁选工艺,最终获得了产率59.01%、铁品位58.69%和铁回收率85.89%的铁精矿。研究结果为该类难选铁矿资源的高效利用提供了一种新的技术途径。  相似文献   

8.
为确定贵州某褐铁矿的开发利用方案,进行了磁化焙烧-弱磁选工艺技术条件研究。结果表明,在煤粉添加量为8%、焙烧温度为850 ℃、焙烧时间为60 min、焙烧产物磨矿细度为 -0.074 mm占75%、弱磁选磁场强度为151.27 kA/m情况下,采用1粗1精1扫、中矿集中返回流程处理该矿石,可获得铁品位为61.14%、铁回收率为89.80%的铁精矿。  相似文献   

9.
国外某微细粒嵌布的赤铁矿石中有回收价值的元素是铁,含量为44.08%,FeO含量仅为0.14%,主要脉石矿物成分SiO_2和Al_2O_3含量分别为13.44%和5.80%;主要铁矿物为赤铁矿,主要脉石矿物为石英;矿石中99.10%的铁为赤(褐)铁。对悬浮磁化焙烧—弱磁选工艺加工、处理矿石的可行性进行了研究。结果表明,在给料粒度为-0.074 mm占55%,焙烧温度为560℃,CO的浓度为30%,还原时间为20 min,弱磁选给矿粒度为-0.038 mm占95%条件下处理矿石,可获得铁品位为58.29%、铁回收率为91.45%的精矿。悬浮磁化焙烧—弱磁选工是实现该类型铁矿石开发利用的有效工艺。  相似文献   

10.
张高杰  毕克俊 《现代矿业》2020,36(7):168-170
河南某难选赤褐铁矿石铁品位达4038%,主要脉石成分SiO2含量为1563%,有害元素硫、磷含量均不高;矿石中的铁主要是赤褐铁,其次是硅酸铁、硫化铁,磁性铁含量很低。为探索该矿石可能的开发利用工艺,进行了多种选矿工艺研究。结果表明:直接正浮选、直接反浮选、焙烧—弱磁选工艺均不能有效提高精矿铁品位;矿石采用焙烧—磨矿—弱磁选工艺处理,在矿样与焦炭粒度均为-2 mm,质量比为100∶4,800 ℃焙烧60 min,焙砂磨选细度为-0074 mm占90%,弱磁选磁场强度为4538 kA/m的情况下,可获得铁品位为5584%、回收率为8922%的铁精矿;该精矿经再磨—弱磁精选,在再磨细度为-0074 mm为98%,弱磁精选磁场强度为3404 kA/m的情况下,可获得铁品位为5637%、回收率为8893%的铁精矿。  相似文献   

11.
酒钢选烧厂竖炉给矿铁品位为33.84%,有用铁矿物主要为镜铁矿、褐铁矿、菱铁矿,脉石矿物主要为石英,有害元素P含量较低。针对酒钢镜铁矿采用常规选矿方法选别指标差的问题,采用磁化焙烧-磨矿-弱磁选流程法对有代表性试样进行选别试验研究。结果表明:在焙烧温度650 ℃、焙烧时间5 min、CO浓度30%、总气体流量500 mL/min条件下进行磁化焙烧,焙烧产品磨细至-0.074 mm占82%,在磁场强度为119.4 kA/m条件下经过弱磁选,精矿铁品位可以达到59.12%、铁回收率为81.31%,精矿中主要有害杂质Al2O3和P含量都较低,达到冶炼原料的要求。研究结果为酒钢镜铁矿的开发利用提供了依据,并对同类型矿石的开发利用具有指导意义。  相似文献   

12.
对酒钢-15 mm粉矿进行了选矿试验。结果表明:在磨矿细度为-0.074 mm占69.50%条件下,经1粗2扫强磁选,强磁选精矿在膨润土添加量为1.0%时进行造球,所造球团在焙烧温度为600℃、煤粉用量为3%、焙烧时间为30 min条件下进行焙烧,获得的焙烧产品铁品位为48.30%。焙烧产品磨细至-0.1 mm,在磁场强度为144 k A/m条件下弱磁选,可以获得铁品位为59.39%的精矿;焙烧产品以GE-609为捕收剂经1粗1精1扫反浮选,可以获得铁品位为58.25%的精矿。两种流程获得的精矿指标均能达到与现场块矿竖炉焙烧—弱磁选—反浮选指标接近。试验结果可以为酒钢粉矿开发利用提供技术支持。  相似文献   

13.
某复杂难选铁矿石铁含量为55. 88%,铁主要以赤铁矿、褐铁矿形式存在,脉石矿物主要是石英和三水铝石。为探究磁化焙烧—磁选工艺处理该矿石的可行性,进行了选矿试验研究。结果表明,在原料直接烘干、打散(-0.074 mm含量53.41%)、焙烧温度为540℃,CO浓度为40%,焙烧时间为25 min条件下进行焙烧,焙烧产品磨细至-0.1 mm,在磁场强度为56.7 kA/m条件下弱磁选,可获得铁品位63.56%、铁回收率97.18%铁精矿。磁化焙烧技术为这种复杂难选赤褐铁矿的开发利用提供了依据。  相似文献   

14.
针对某铁品位为30.16%低品位褐铁矿,采用制粒—气基磁化焙烧—磁选工艺进行了试验研究。结果表明,对小球粒度为5~2 mm,混合气体CO、CO2、N2体积比为1∶2∶2,磁化焙烧料层厚度200 mm,焙烧温度为725℃,保温时间为10 min的磁化焙烧产品进行磨选试验,在磨矿细度为-0.074 mm占85%、弱磁选磁场强度为100 kA/m情况下,可以获得铁品位为59.78%、铁回收率达86.19%的弱磁精矿。  相似文献   

15.
某鲕状铁矿石以磁赤铁矿为主,铁矿物与脉石矿物嵌布关系极复杂,且含一定量易泥化的赤铁矿和含铁黏土,常规磁选工艺难以显著提高精矿铁品位。采用还原焙烧-阶段磨矿阶段弱磁选-反浮选工艺对该矿石进行了开发利用研究。结果表明,矿石经还原焙烧-两段阶段磨矿阶段弱磁选-1粗1精2扫、中矿顺序返回反浮选流程处理,最终获得了铁品位为61.30%、铁回收率为80.43%的铁精矿。  相似文献   

16.
酒钢选矿厂-15 mm粉矿采用连续磨矿—强磁选工艺处理,仅能获得铁品位为46.60%、铁回收率为65.70%的铁精矿,该指标远低于现场+15 mm块矿竖炉磁化焙烧—再选工艺的铁精矿指标。为确定-15 mm粉矿的合理处理工艺,以破碎—压球—竖炉还原焙烧—弱磁选工艺为参照,进行了-15 mm粉矿磨矿—强磁预选抛尾—压球—焙烧—弱磁选工艺试验。结果表明:(1)添加黏结剂的强磁预选精矿冷压球强度满足竖炉磁化焙烧要求。(2)冷压球在与+15 mm块状矿石共炉焙烧的半工业试验中,获得了铁品位为55.48%、铁回收率82.67%的精矿。(3)冷压球在单独竖炉焙烧的工业试验中,获得了铁品位为53.43%、铁回收率78.38%的精矿,与现场采用连续磨矿—强磁选工艺获得的指标相比,铁品位和铁回收率分别提高了6.83个百分点和12.68个百分点。在完成竖炉内部结构、排矿方式、焙烧工艺制度、黏结剂优化后,生产指标有望进一步提升,具有广泛的工业化前景。  相似文献   

17.
鞍山地区许东沟和哑巴岭采区的铁矿石铁品位为29.50%,铁矿物主要为磁铁矿,主要脉石为石英。为高效开发利用该矿石,在采用X荧光分析、化学成分分析、铁物相检测和扫描电子显微镜分析矿石性质基础上,进行了湿式粗粒中磁预选—阶段磨矿、阶段弱磁选—淘洗机精选条件试验和扩大连选试验。结果表明:(1)-2.5 mm高压辊磨产品经过筒式磁选机中磁预选,粗精矿铁品位为40.20%、铁回收率为89.76%;(2)预选粗精矿经过两阶段磨矿(一、二段磨矿细度分别为-0.074 mm占75%和-0.045 mm占90%)、三阶段弱磁选和一段淘洗机精选,最终获得产率35.73%、铁品位67.08%、铁回收率81.24%的铁精矿,尾矿铁品位为8.61%,研究结果可作为该矿石开发利用依据。  相似文献   

18.
大量高铁铝土矿因氧化铁含量高、矿物嵌布关系复杂而处于待开发状态。为确定四川某高铁铝土矿的高效开发利用方案,对还原焙烧—弱磁选提铁—铝溶出的铝铁高效分离回收工艺中主要影响因素——焙烧制度、焙烧产物磨矿细度及弱磁选磁场强度进行了单因素条件试验。结果表明,在还原焙烧试样粒度为0.18~0 mm、配碳系数为2.0、焙烧温度为1 350℃、焙烧时间为20 min、焙烧产物磨矿细度为-0.074 mm占91%、弱磁选磁场强度为60kA/m情况下,可取得铁品位为89.83%、铁回收率为84.08%的金属铁粉,Al2O3浸出率为69.35%,较好地实现了铝、铁分离。  相似文献   

19.
王社光  涂光富 《现代矿业》2019,35(8):127-128
中东某鲕状赤铁矿石铁品位为47.44%,铁主要以磁性铁的形式存在,铁在磁性铁中分布率为60.26%。为给该矿石开发利用提供依据,采用阶段磨矿阶段磁选的方法进行了试验研究。结果表明:一段磨矿细度-0.074 mm含量80.8%,一段磁选磁场强度0.12 T,二段磨矿细度-0.074 mm含量93.3%,二段磁选磁场强度0.8 T,三段磨矿细度-0.074 mm含量95.2%,三段磁选磁场强度0.4 T,可以得到铁品位61.02%、回收率53.25%的精矿。有效实现了铁与杂质矿物的分离与富集。  相似文献   

20.
白云鄂博铁矿为铁、铌、稀土共伴生矿,铁品位为30.70%,Re O、Nb2O5含量分别为5.43%和0.11%,主要有用矿物磁铁矿含量为37.46%,83.06%的铁以磁铁矿的形式存在;脉石矿物以碳酸盐、闪石、辉石及萤石为主,次为石英、长石及黑云母等。为充分利用好矿石中铁矿物的自然禀赋,对矿石进行了超级铁精矿生产工艺研究。结果表明,矿石采用3个阶段磨矿—弱磁选工艺处理,一段磨矿细度为-0.074 mm占98.0%,弱磁粗选磁选强度为200 k A/m;二段磨矿细度为-0.038 mm占93.9%,弱磁精选1、弱磁精选2的磁选强度分别为90 k A/m和70 k A/m;三段磨矿细度为-0.030 mm占93.0%,弱磁精选3磁选强度为60 k A/m的情况下,最终获得铁品位为70.50%、铁回收率为67.58%、Si O2含量为0.35%的含微量Nb、RE的超级铁精矿,可作为制备直接还原铁的原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号