首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用MMS-200热模拟试验机首先测得07Ni5DR低温压力容器钢的临界相变点,然后测定了900℃变形40%后不同冷速连续冷却过程中钢的膨胀曲线,并检验不同冷速下试样的室温组织。结果表明,钢的临界相变点为Ac_1=640℃,Ac_3=753℃。当冷速为1℃/s时,所得室温组织主要是铁素体和粒状贝氏体;当冷速为10℃/s时,出现马氏体组织,铁素体减少;当冷速为15℃/s时,不再发生铁素体相变,组织为贝氏体和马氏体。随着冷速进一步增加,组织以贝氏体和马氏体为主。结合膨胀法与金相法,利用Origin 8.0软件绘制了07Ni5DR钢的动态CCT曲线。  相似文献   

2.
采用热膨胀-显微组织-显微硬度相结合的方法,绘制了1.0 GPa级冷轧增强成形性双相钢的静态连续冷却转变曲线(CCT曲线),并研究了退火工艺对实验钢显微组织与力学性能的影响。结果表明:实验钢过冷奥氏体冷却转变过程主要存在铁素体相变区、贝氏体相变区和马氏体相变区的3个相变区;当冷速低于1℃/s时,实验钢主要发生铁素体与贝氏体相变,并存在少量马氏体相变;当冷速在3~20℃/s之间时,发生马氏体与贝氏体相变;当冷速达到30℃/s及以上时,完全发生马氏体转变。随冷却速率的增加实验钢的显微硬度逐渐增大,前期显微硬度提升较快,冷速达到20℃/s后逐渐趋于平稳,与对应冷速下的显微组织一致。实验钢的组织主要为铁素体、马氏体和残留奥氏体,三者匹配有利于变形过程基体强塑性的提升。当均热温度为810℃时,实验钢中残留奥氏体含量最高,为4.9%,变形过程中相变诱导塑性(TRIP)效应显著,力学性能最佳,屈服强度为791.7 MPa、抗拉强度为1041.7 MPa、伸长率为19.37%、强塑积达到20.18 GPa·%。  相似文献   

3.
采用热膨胀仪测定了C-Mn-Al系TRIP钢在不同冷速下连续冷却转变的膨胀曲线;并运用Thermo-Calc软件,进行了C-Mn-Al系TRIP钢相变的理论计算。结合金相组织观察,研究了其连续冷却转变产物的组织形态。结果表明,当冷速0.5℃/s时,组织由许多多边形先共析铁素体、少量珠光体和无碳化物贝氏体组成;冷速5℃/s时,组织为铁素体和贝氏体;冷速10℃/s时,开始出现马氏体和贝氏体的混合组织。  相似文献   

4.
采用DIL 805A/D/T多功能淬火膨胀仪,结合显微组织表征和硬度测试,研究了25Cr2Ni4MoV钢在短时奥氏体化条件下的连续冷却转变(CCT)动力学和组织演变规律。结果表明:在850℃短时奥氏体化条件下,连续冷却相变发生在450~150℃区间;当冷速大于2℃/s时得到的室温组织为马氏体,随着冷速降低,试样中出现贝氏体;当冷速小于0.5℃/s时其显微组织主要为贝氏体组织;随着冷速的进一步降低,当冷速为0.02℃/s时,除了贝氏体以外还有少量的马氏体/奥氏体岛和残留奥氏体。冷速从2℃/s降低至0.5℃/s时硬度变化较明显,这与组织中形成的马氏体与贝氏体的比例有关。由于短时奥氏体化条件下存在未溶解的碳化物,基体碳浓度较低,其Ms温度较高;贝氏体转变速率也较快,这可能与奥氏体的晶粒尺寸小和存在未溶碳化物有关。  相似文献   

5.
SDP2新型贝氏体模具钢的相变及动力学   总被引:2,自引:0,他引:2  
对新开发大截面贝氏体塑料模具钢SDP2在极低冷速下的过冷奥氏体连续冷却转变过程和相变动力学进行了研究。采用DIL805A高精度差分热膨胀仪测量SDP2钢线膨胀行为,利用SEM分析冷却转变产物;根据JMA公式计算SDP2钢贝氏体相变激活能和Avrami指数。结果表明,SDP2钢过冷奥氏体连续冷却过程包含珠光体、贝氏体和马氏体转变,而无铁素体转变;当冷速大于0.02℃/s时,转变产物以下贝氏体或马氏体为主;小于0.02℃/s时,以上贝氏体或粒状贝氏体为主,并出现珠光体。SDP2钢贝氏体转变的激活能为117 k J/mol,SDP2钢在不同冷速下贝氏体转变动力学指数Avrami指数n≈2~3,经分析计算所得的Avrami指数值所对应的显微组织形态和实验所观察到的显微组织相符合。  相似文献   

6.
利用Linseis L78 RITA相变仪测定了低合金耐磨钢在不同冷却速率下的膨胀曲线,并结合金相、硬度检验绘制出试验钢的连续冷却转变曲线(CCT曲线),研究不同冷却速度对该钢组织转变的影响,利用VL2000DX高温激光共聚焦显微镜观察并分析了试验钢的马氏体相变过程。结果表明:试验钢的临界转变点Ac1为766℃,Ac3为825℃;当冷速为0.01~0.1℃/s时,试验钢的显微组织为粒状贝氏体;当冷速达到0.2℃/s时,组织为上贝氏体+少量马氏体。随着冷速增加到0.5℃/s,贝氏体组织几乎全部消失,取而代之的是马氏体组织,并且随着冷速的进一步增加马氏体板条更加明显。原位观察结果表明:马氏体优先在奥氏体晶界处形核,后转变的马氏体在先形成的马氏体界面上形核,两者之间具有一定位向关系。  相似文献   

7.
研究了不同冷却速率下一种含钛微合金钢的相变过程与相变温度的变化,结合金相-硬度法获得该含钛微合金钢的动态CCT曲线。结果表明:含钛微合金钢的Ac_1=702℃、Ac_3=826℃;随着冷速增加,奥氏体转变开始和结束温度逐步下降;冷速小于1.5℃/s时,组织为铁素体与珠光体;1.5~2.5℃/s冷速为贝氏体产生的临界冷速;冷速为5~10.0℃/s时,组织主要是贝氏体;冷速为15~20℃/s时组织为下贝氏体与少量马氏体;随冷速增加,硬度整体呈升高趋势。  相似文献   

8.
利用膨胀法结合金相-硬度法,在Formast-F全自动相变仪上测定了60mm厚Q690D钢连续冷却转变静态CCT曲线,研究了冷却速度对显微组织、硬度的影响。结果表明:当冷速小于1℃/s时,转变产物为铁素体、珠光体和贝氏体;当冷速为1~3℃/s,转变产物为铁素体、贝氏体;当冷速为5~40℃/s,转变产物为贝氏体、马氏体;当冷速大于40℃/s时,转变产物为完全马氏体;当冷速小于20℃/s时,显微硬度逐渐升高;当冷速在20~100℃/s时,显微硬度在390 HV左右。  相似文献   

9.
针对EQ70海洋平台用钢实际生产条件及存在问题,采用Gleeble-1500热模拟试验机测定了EQ70海洋平台用钢动态连续冷却转变膨胀曲线,再结合金相组织观察和显微硬度测定,获得EQ70海洋平台用钢动态连续冷却转变曲线。结果表明:冷速为0.05 ℃/s时,试验用钢的组织为粒状贝氏体以及少量的铁素体;冷速在0.1 ℃/s到1 ℃/s之间组织主要为粒状贝氏体和板条贝氏体;冷速为2 ℃/s时,组织为板条贝氏体和少量马氏体;随着冷速增加,马氏体的含量逐渐增多,冷速在8 ℃/s以上时,组织全部为马氏体。  相似文献   

10.
通过测定不同冷却速度下的相变膨胀曲线、显微组织和硬度,得到了4Cr5Mo2V钢的过冷奥氏体连续冷却转变(CCT)曲线;结合CCT曲线,研究了不同冷却速度下组织形貌演变及硬度变化的规律;比较分析了4Cr5Mo2V钢与H13钢过冷奥氏体连续冷却转变的异同。结果表明:经过不同冷却速度冷却后,4Cr5Mo2V钢的相变产物主要为贝氏体(B)和马氏体(M);冷速小于0.06℃/s时,相变产物主要是贝氏体组织;冷却速度在0.06~0.14℃/s之间,相变产物中出现了贝氏体和马氏体的混合组织;当冷速大于0.14℃/s时,相变产物为马氏体组织。4Cr5Mo2V钢与H13钢的CCT曲线相比,位置向右整体偏移,无铁素体+珠光体转变区,且贝氏体生成区变小,相同冷速下硬度明显提高。  相似文献   

11.
利用热膨胀仪测得不同冷却速度下的膨胀曲线,采用切线法确定各冷速下的相变温度,结合显微组织和维氏硬度检测绘制出37Mn5钢的CCT曲线。结果显示,当冷却速度<5℃/s时,组织为铁素体和珠光体;冷却速度在5~40℃/s时,组织中形成贝氏体,冷速在5℃/s时开始发生贝氏体转变,10℃/s时开始发生马氏体转变;当冷却速度≥40℃/s 时,组织全部成为板条马氏体。  相似文献   

12.
采用Gleeble 3500热模拟实验机研究了G20Cr Ni2Mo A轴承钢在连续冷却过程中的相变规律,结合膨胀曲线绘制出G20Cr Ni2Mo A钢连续冷却转变曲线,并对不同冷速下显微组织和维氏硬度进行分析。结果表明:在低速冷却时,在两相区先发生铁素体相变,随着冷速的增加,铁素体逐渐减少,基体内残留奥氏体增多,珠光体相变温度区间为600~700℃,贝氏体相变区间主要集中在400~600℃,马氏体转变温度为412℃,当冷速在0.5~5℃/s时,室温下获得贝氏体组织,当冷速大于10℃/s时室温下将获得马氏体组织。  相似文献   

13.
使用DIL805L型膨胀仪分析了曲轴钢的相变规律,得到了其奥氏体连续冷却转变曲线(CCT)。结果表明,试验钢的临界点为:Ac1=682 ℃,Ac3=765 ℃;当冷速为0.2~5 ℃/s时,转变产物为铁素体+珠光体;当冷速大于5 ℃/s时,转变产物为铁素体、珠光体、贝氏体与马氏体的混合组织;当冷速增大到15 ℃/s时,转变产物为贝氏体和马氏体组织;冷速越大冷却后马氏体含量越多,硬度逐渐增加。  相似文献   

14.
利用Formaster-F全自动相变测量装置对超低碳微合金钢进行不同冷却速度的热处理,采用金相显微镜观察试验钢的微观组织,采用450SVD数显维氏硬度计测量试验钢的维氏硬度。结果表明,当冷却速度<1 ℃/s时,试验钢的显微组织均为多边形铁素体,维氏硬度平均最大值为177.0 ;当冷却速度达到3 ℃/s时出现准多边形铁素体,维氏硬度平均最大值为187.3 HV5;当冷却速度达到5 ℃/s时钢的显微组织中出现粒状贝氏体,此时维氏硬度平均最大值为193.3 HV5;20 ℃/s时出现贝氏体铁素体,准多边形铁素体消失,维氏硬度平均最大值为221.6 HV5;当冷却速度达到50 ℃/s时钢中出现马氏体,显微组织为三相组织即粒状贝氏体+贝氏体铁素体+马氏体,维氏硬度平均最大值达到224.0 HV5;冷却速度达到165 ℃/s后,钢中的显微组织仍为三相组织,此时试验钢的平均维氏硬度值达到本试验的最大值263.3 HV5。在所有的冷速下,试样中均未发现珠光体。HV5  相似文献   

15.
方光锦 《金属热处理》2020,45(3):208-210
利用DIL805A型热膨胀仪测定R4(22MnCrNiMo)钢膨胀曲线,并结合金相、硬度检验绘制出试验钢的CCT曲线,研究不同冷却速度对该钢的组织转变影响。结果表明,R4(22MnCrNiMo)钢的临界转变点为:Ar3=819.5 ℃,Ar1=778.5 ℃;当冷速为0.1~0.5 ℃/s时,冷却得到的组织主要为下贝氏体+残留奥氏体+极少量马氏体;当冷速达到3 ℃/s时,显微组织中只有极少量下贝氏体组织存在;继续增大冷速,显微组织均为板条状、针状马氏体+残留奥氏体。  相似文献   

16.
通过热模拟试验测得42CrMo钢动态CCT曲线,结果表明:当冷速小于0.3℃/s时,42CrMo钢以发生铁素体和珠光体相变为主,可获得硬度小于308 HBW的组织;当冷速大于0.3℃/s时主要发生贝氏体和马氏体转变,不发生明显的铁素体和珠光体相变,硬度值较高,确定现场生产42CrMo钢轧材冷速应控制在0.3℃/s以下为最优。依据动态CCT曲线,对规格为φ78 mm和φ50 mm的两种轧材进行轧制试验,分别采取有保温装置和无保温装置两种冷却方式。结果表明:通过增加保温装置,轧后冷速降低,轧材硬度下降;φ78 mm规格轧材轧后冷速小于0.3℃/s,硬度降低至257 HBW。  相似文献   

17.
采用DIL805淬火膨胀仪、金相显微镜及显微硬度计,研究了ES355Al钢连续冷却过程的相变及组织转变规律,分析了冷却速率对ES355Al钢相变及组织演变的影响。结果表明:过冷奥氏体在冷却过程中发生铁素体转变、珠光体转变、贝氏体转变和马氏体转变。在冷速为0.2~1℃/s时,发生铁素体析出和珠光体转变;在冷速为2~7℃/s时,发生铁素体析出、珠光体转变和贝氏体转变,其中7℃/s为珠光体转变结束的临界冷速;,2℃/s、15℃/s分别为贝氏体、马氏体开始转变的临界冷速。ES355Al钢的显微硬度随着冷速增加而增加,由冷速0.2℃/s时的170 HV5增加到20℃/s时的350 HV5。  相似文献   

18.
利用L78RITA淬火热膨胀仪研究了X80管线钢过冷奥氏体转变的相变规律,结合金相-硬度法绘制了试验钢的连续冷却转变(CCT)曲线。结果表明,随着冷却速率的增加,X80管线钢过冷奥氏体分别发生了铁素体、贝氏体、马氏体转变;冷速小于3℃/s时,组织为铁素体和贝氏体;冷速在3~20℃/s时,组织只有贝氏体;冷速大于40℃/s时,组织中开始出现马氏体,且随着冷速的进一步增大,马氏体的含量逐渐增多,贝氏体逐渐减少直至消失。试验钢硬度随着冷却速率的增加呈逐步升高的趋势。在CCT曲线基础上,建立了相变点温度-冷却速率关系模型,并通过回归计算得到拟合度较高的相变模型,且模型计算值与试验值之间能够很好的地吻合,证明了该相变模型的可行性。  相似文献   

19.
利用Gleeble-1500热模拟试验机测定了V-N微合金化600 MPa高强度钢筋钢在不同冷速下连续冷却转变的热膨胀曲线,结合显微组织观察,获得了该钢的动态连续冷却转变曲线。结果表明,当冷却速率小于1 ℃/s时,组织为铁素体和珠光体;当冷却速率为3 ℃/s时,出现少量贝氏体;当冷却速率为8℃/s时,珠光体消失,组织为铁素体和贝氏体;当冷却速率为10 ℃/s时,开始出现马氏体;当冷却速率在20 ℃/s以上时,组织全部转变为马氏体。  相似文献   

20.
利用JMat-Pro软件模拟了42CrMo钢的连续冷却转变曲线,并采用DIL805L相变淬火膨胀仪实测了钢的各相变点,对不同冷却速度下的组织转变和贝氏体含量进行了分析,并绘制其CCT曲线。结果表明:42CrMo钢Ac1=743 ℃,Ac3=792 ℃。冷速小于0.5 ℃/s时,组织为先共析铁素体与珠光体混合组织;冷速0.5~10 ℃/s之间,存在一定量的贝氏体,随冷速加快,贝氏体量先增后降,马氏体含量逐渐增多,使得硬度呈现较大增幅。冷速大于10 ℃/s,组织为基体马氏体+少量贝氏体的混合组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号