首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
采用机械合金化制备不同Mg含量(0,5%,10%,20%)的Al-Mg/5%Al_2O_3纳米复合材料,研究Mg含量对材料力学和热电性能的影响。采用扫描电子显微镜、X射线衍射和透射电子显微镜对所得粉末进行表征。结果表明,往Al-Al_2O_3复合材料中添加Mg可形成Al-Mg固溶体。随着Mg含量的增加,Al的点阵位置逐渐被Mg取代,导致晶粒尺寸减小,晶格应变增加。随着Mg含量的增加,复合材料的显微硬度增加。热导率和电导率随着温度升高线性增加。热导率随Mg含量的增加而增加。  相似文献   

2.
本文以WC-15%(Co-Ni)粗晶硬质合金为研究对象,采用扫描电镜、金相组织观察、硬度、钴磁、矫顽磁力、密度、横向断裂强度、断裂韧性测试等试验手段,研究了不同烧结温度对合金的组织结构及性能的影响。结果表明:烧结温度对WC-15%(Co-Ni)合金组织结构有明显的影响,随着温度的升高,晶粒尺寸逐渐增加,粗细晶尺寸差异减小;烧结温度对WC-15%(Co-Ni)合金性能有较大影响,随着温度的升高,磁力值下降,而硬度、横向断裂强度和断裂韧性呈现先增加后降低的趋势;本实验条件下的WC-15%(Co-Ni)粗晶合金烧结温度在1 460℃时综合性能最佳。  相似文献   

3.
研究放电等离子烧结AA2024-Y复合材料低温轧制后的显微组织与力学性能的关系。添加钇有促进晶粒细化和析出的作用,可以提高复合材料的力学性能;但随着钇含量的增加,力学性能有明显的先增加后减小的趋势。当钇含量为0.3%(质量分数)时,复合材料的力学性能最佳。为了进一步提高复合材料的抗拉强度,在标准低温条件下对复合材料进行多道次低温轧制,总压下量为25%。对低温轧制后复合材料的力学性能及相应的显微组织进行研究。扫描电镜和透射电镜显微组织表明,样品具有双尺寸晶粒,即在实际晶粒内部形成纳米级的亚晶粒。低温轧制后,由于晶粒尺寸的减小和位错密度的增加,复合材料的拉伸性能明显提升;添加0.3%钇的复合材料具有最优的力学性能,其硬度、屈服强度和极限抗拉强度分别为HV 153、539 MPa和572MPa,延展性适中。  相似文献   

4.
研究了添加不同含量Al_2O_3陶瓷粉末对刹车片金属陶瓷复合材料密度、硬度的影响,以及温度对复合材料性能的影响。结果表明,随着Al_2O_3质量分数的增加,复合材料密度和硬度逐渐减小;在Al_2O_3质量分数为4%时,复合材料性能最佳;烧结工艺有利于复合材料性能的改善,随着温度的增加,复合材料摩擦系数逐渐减小。  相似文献   

5.
《铸造技术》2015,(2):471-474
研究了Y2O3添加对Cu-W合金显微组织和性能的影响。结果表明,混合粉末经过裂解、还原后颗粒尺寸得到显著细化。随着Y2O3添加量的增加,烧结试样中钨相尺寸逐渐减小。Y2O3的含量为0.4%时组织中的钨相分布最为均匀,烧结颈形成良好。但随着Y2O3含量的继续增加,钨颗粒自身及Y2O3的团聚倾向均增加,组织中出现孔洞。且Cu-W合金的硬度、电导率均逐渐减小。  相似文献   

6.
采用印度沿海锆石粉与硅线石海滩砂反应烧结,制备含20%(质量分数)氧化锆的莫来石-氧化锆复合材料。添加4%~12%(摩尔分数)的氧化钙作为添加剂。研究了添加剂对压实性能、显微组织、力学性能和热力性能的影响。添加氧化钙可以使压实温度从1600°C降低至1550°C。氧化钙可以形成少量的液相(铝硅酸钙),有利于烧结进行。添加4%氧化钙可使复合材料的晶粒尺寸减小,当添加量大于4%时,材料的晶粒尺寸随氧化钙添加量的增加而增大。添加4%氧化钙样品的弯曲强度约为225MPa,断裂韧度约为6MPa·m~(1/2),且抗热冲击性能得到明显提高。氧化钙可以稳定四方氧化锆,从而提高材料的力学性能。  相似文献   

7.
在真空条件下,采用高温烧结钨骨架后渗铜工艺制备靶材用钨铜复合材料,研究烧结温度对钨坯及钨铜复合材料组织与性能的影响.结果表明:随着烧结温度的提高,钨颗粒间逐渐由点接触扩大为面接触,烧结颈逐渐长大,同时孔隙不断缩小并趋于球形,钨骨架和钨铜复合材料相对密度及硬度不断增加,而钨铜复合材料的电导率不断下降.当烧结温度为1950 ℃时,钨骨架和钨铜复合材料的相对密度分别达到74.8%和96.9%的最高值;钨铜复合材料的硬度(HB)达最大值2520 MPa,而电导率则降低到36.6IACS%,其中氧含量仅为4×10-6,氮含量为3×10-6.  相似文献   

8.
采用机械合金化方法制备了掺杂稀土Er的n型赝三元(Bi_2Te_3)_(0.90)(Sb_2Te_3)_(0.05)(Sb_2Se_3)_(0.05)合金粉体,XRD分析表明,经100h球磨实现了稀土Er与赝三元晶体的合金化,通过SEM图片分析表明,球磨100h后颗粒尺寸达到5~50nm量级。使用n型赝三元掺Er合金粉体在烧结时间0.5h下制备了冷压烧结块体,在室温下测量了Seebeck系数(α)和电导率(σ),结果表明,随烧结温度的升高,Seebeck系数表现逐渐减小的趋势,电导率逐渐随烧结温度增加而增大。随着Er掺杂浓度的增加,冷压烧结样品的Seebeck系数绝对值呈先增加而后减小趋势,在掺杂浓度为0.2%(质量分数)时达到最大,约为159.6μV·K~(-1),电导率随掺杂浓度的增加逐渐变大。  相似文献   

9.
采用二步烧结技术制备AZO陶瓷靶材,并采用XRD、SEM和EDS对AZO陶瓷靶材进行表征,研究AZO靶材的电阻性能。结果表明:当Al的掺杂量w(Al2O3)为0.5%时,AZO靶材出现第二相ZnAl2O4;随Al掺杂浓度增加,ZnAl2O4的衍射峰强度逐渐增强,ZnO晶粒尺寸逐渐减小;随着第二步烧结温度θnd的升高,AZO靶材的晶粒尺寸逐渐增大,相对密度也随之增加。靶材的电阻率随θnd增加而降低,且随掺杂浓度升高而增加;在第一步烧结温度θst=1 400℃,升温速率vst=10℃/min,第二步烧结温度θnd=1 350℃和t nd=16 h烧结条件下,AZO陶瓷靶材(w(Al2O3)=1.5%)的电阻率仅为2.9×10-2Ω·cm。  相似文献   

10.
放电等离子烧结温度对超细晶W-40Cu复合材料的影响   总被引:1,自引:0,他引:1  
采用高能球磨法制备了W-40Cu超细晶复合粉体,继而进行了放电等离子烧结(SPS),获得了致密的超细晶W-40Cu块体复合材料,着重研究了烧结温度对复合材料组织和性能的影响.结果表明,随着烧结温度升高,材料的致密度、硬度和电导率也随之升高;在950℃烧结5 min的W-40Cu复合材料,W颗粒尺寸约300~500 nm,相对致密度达98%,显微硬度HV为287,电导率为17.9 MS/m.  相似文献   

11.
采用真空热压烧结在不同工艺参数下制备SiC颗粒体积分数分别为10%,20%,30%,40%的SiCp/ZL101A复合材料,研究烧结温度、保温时间等工艺参数对SiCp/ZL101A复合材料显微组织的影响以及SiC含量对SiC颗粒在基体ZL101A中分布均匀性的影响,同时对SiCp/ZL101A复合材料界面进行透射电镜显微分析。结果显示,随着烧结温度的增加,组织致密度增加,气孔数量及尺寸减小;保温时间的增加导致复合材料平均晶粒尺寸的增加;随着SiC颗粒体积分数的增加,SiC颗粒在基体ZL101A中分布均匀性变差;固相烧结法制备的SiCp/ZL101A复合材料中没有出现界面反应现象。  相似文献   

12.
采用粉末冶金法制备了质量分数为0%(纯铜)、0.4%、0.8%和1.2%的石墨烯增强铜基复合材料,利用光学显微镜、高分辨场扫描电镜、高精度固体密度仪、数字式电导率仪和万能试验机对石墨烯增强铜基复合材料的微观组织和性能进行研究和分析。结果表明,铜粉纯度高、无杂质,随着石墨烯含量的增加,复合材料的孔隙率随之增加,而且石墨烯的团聚现象逐渐加重,晶粒尺寸呈现先降低后提高的现象,而石墨烯含量在0.8%时,晶粒尺寸最小为43.385 nm。以复合材料的物理性能方面来说,石墨烯增强铜基复合材料的密度和电导率呈现下降趋势。随着石墨烯含量的增加,复合材料的屈服强度和最大抗压强度呈现先上升后下降的趋势,而压缩率呈现逐渐下降的趋势,当石墨烯含量为0.8%时,屈服强度和最大抗压强度达到最大值,分别为80.79和332.88 MPa。  相似文献   

13.
通过在铜和钛的混合粉末中引入石墨烯增强相,使用超声分散和球磨法对粉末进行均匀分散、混合,采用放电等离子烧结(SPS)的方法制备石墨烯增强铜基复合材料,研究了烧结温度对复合材料组织和性能的影响规律。结果表明:随着烧结温度的升高,复合材料组织中晶粒尺寸总体上不断增大,孔隙等缺陷则相应有所减少;复合材料密度值和硬度值随着烧结温度的升高呈上升趋势,而导电率逐渐下降。在750℃的烧结温度下,复合材料导电率最高,达到56. 8%IACS;在900℃的烧结温度下,复合材料密度为8. 54 g/cm~3,达到纯铜(8. 51 g/cm~3)水平,而布氏硬度值达到66. 4 HBW,较纯铜(46. 6 HBW)提高了42. 5%。  相似文献   

14.
以元素粉末为原料,采用模压烧结技术制备了Ti-(2-20)Fe合金(Fe分别为2%、5%、10%、15%和20%),探讨了烧结工艺及Fe含量对合金组织和力学性能的影响规律。结果表明,在1100~1300℃烧结温度内可制备出组织成分均匀、高致密度(约为98%)的Ti-Fe合金材料。随Fe元素含量的提高,合金的烧结致密化温度明显降低,制备合金的晶粒尺寸减小,α层片体积含量降低并逐渐细化。当Fe含量为20%时,合金由单一β相晶粒构成。在1150℃烧结制备的Ti-15Fe合金相对具有最优的综合性能,其硬度为43.9 HRC,弹性模量为64.6 GPa,抗压强度为2702 MPa,压缩率为32.7%。  相似文献   

15.
采用原位化学工艺制备了ZrO2/Cu纳米复合粉末,并用粉末冶金法制备了ZrO2/Cu纳米复合材料。研究了烧结温度、烧结时间对纳米复合材料性能的影响。结果表明,随着烧结温度的升高,复合材料的体积收缩率增大,同时电导率、显微硬度也增大;随着烧结时间的延长,体积收缩率增大,显微硬度增大到一定程度后减小。当烧结温度为975℃,时间为90min时,得到的ZrO2/Cu纳米复合材料性能较佳(122HV,93.4IASC%)。  相似文献   

16.
采用熔铸-原位合成法制备了TiC/7075Al复合材料并对其微观组织和凝固机制进行了研究。原位合成复合材料中的TiC颗粒以近球形为主,平均尺寸小于700 nm。随着TiC颗粒含量的增加,复合材料的晶粒尺寸明显减小,当TiC颗粒含量为8wt%时,基体晶粒尺寸可以减小至10μm左右。熔体反应过程中,随着TiC增强相颗粒含量的增加,凝固前沿的流体的粘度增加,降低了TiC颗粒的临界裹入速度,同样在反应时降低温度将增加熔体的粘度,有利于TiC颗粒的裹入。  相似文献   

17.
采用机械合金化-真空烧结方法制备出致密细晶钛合金(Ti-6Al-2Sn-4Zr-6Mo),并研究了球磨时间、烧结温度等制备条件对烧结材料密度和显微组织的影响规律。结果表明,随着球磨时间的增加,钛合金烧结材料的密度逐渐升高,显微组织从初生α相+针状的转变β组织逐步转化为细等轴状的α+β组织,并且其晶粒尺寸逐渐减小。当球磨时间为40h,烧结温度为1200℃时,烧结材料的相对密度达到99.1%,平均晶粒尺寸仅为2μm。  相似文献   

18.
通过放电等离子烧结技术制备了高熵合金增强Cu基复合材料,研究了烧结温度对复合材料的组织结构与性能的影响。结果表明,高熵合金颗粒在Cu基体中分散相对均匀,与Cu基体结合良好。随着温度升高,结合方式由机械结合为主逐渐转变为扩散结合为主,Cu沿着BCC相扩散进入高熵合金;复合材料的致密度随着温度的升高呈现先增加后降低的趋势;800℃下制备的复合材料硬度(HBW)最高为60.43,致密度为98.4%,电导率为39.09 MS/m。  相似文献   

19.
采用传统固相法制备Bi2-xLix(Mg1/3Nb0.517Sn0.15)2O7(BLMNS)(x=0.025,0.05,0.075,0.1mol)陶瓷,利用X射线衍射、扫描电镜等测试分析方法系统研究锂离子掺杂对BLMNS陶瓷的介电性能和结构的影响。结果表明:在所掺杂锂离子的陶瓷中仍保持单一的单斜焦绿石相结构,无第二相出现。随着锂离子取代量的增加,陶瓷的晶粒尺寸变化不大,晶粒尺寸稍有增大,介电常数(εr)先减小后增大,介电损耗(tanδ)先减小后增大,陶瓷的密度一直减小。随着烧结温度增加,陶瓷的密度先增大后减小。烧结温度为980℃时,锂离子掺杂的BLMNS陶瓷的密度最大。在980℃烧结时锂离子取代量为0.05mol时BLMNS陶瓷的性能较好:εr=163(1MHz),tanδ=0.0001(1MHz),体积密度为7.55g/cm3。  相似文献   

20.
分别采用自蔓延燃烧法和溶胶凝胶法制备了Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ)(SNDC)与La_(10)Si_6O_(27)(LSO)粉体,按照不同的比例制备了SNDC/LSO复合材料。粉体进行模压成型、冷等静压处理,生坯在不同温度(1500,1550,1600℃)下烧结10 h,获得致密的块体电解质材料。对样品进行物相、微观形貌、电导率测试并分析,结果表明:SNDC/LSO复合材料仍保持磷灰石相和萤石相,没有其他相生成,添加LSO使复合材料的晶粒尺寸减小。烧结温度升高有利于30%LSO样品电导率的提高,对于1500℃烧结的样品而言,LSO的添加降低了复合材料的电导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号