首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对22Mn B5热成形钢进行淬火和回火处理,利用扫描电镜、透射电镜、电子背散射衍射技术、室温拉伸检测等方法研究回火温度对22Mn B5热成形钢显微组织和力学性能的影响。结果表明:随着回火温度(100~500℃)的升高,22Mn B5热成形钢的抗拉强度逐渐降低,温度超过200℃后显著降低,屈服强度先略为降低(100℃)再略为升高(200℃)最后显著降低(超过200℃),总伸长率逐渐提高,板条马氏体发生回复和再结晶,板条间的小角度晶界减少,板条边界逐渐模糊,马氏体板条粗化明显;经200℃保温10 min回火后,大部分板条马氏体略有粗化,屈服强度较100℃保温10 min先降低后略为提高至1292 MPa,伸长率为6.2%,出现硬化效应,热成形钢的综合力学性能得到明显改善。  相似文献   

2.
热冲压成形22MnB5钢板的组织和性能   总被引:6,自引:0,他引:6  
采用扫描及透射电镜观察和力学性能实验研究了22MnB5钢板热冲压成形件的组织形貌和力学性能。结果表明,加热温度930℃,保温4.5 min,初始成形温度850℃,冲压速度75 mm/s条件下,22MnB5钢板热冲压成形完成完全马氏体转变,得到均匀板条马氏体组织,组织内产生高密度位错,强度大幅提升,抗拉强度达到1550 MPa。形变有助于动态再结晶并获得更为细小的马氏体组织,促进细晶强化。硼元素在晶界发生偏聚,延长奥氏体转变孕育期,提高了22MnB5钢的淬透性,同时引起点阵畸变,促进相变强化。  相似文献   

3.
对1.6 mm厚的22MnB5热成形钢板和DP980双相钢板进行激光拼焊后,开展了拼焊板热成形淬火实验,研究了拼焊板淬火前后的组织与性能.结果 表明:焊接接头淬火前不同区域的组织在淬火后均转化为板条马氏体.拼焊接头淬火后的平均抗拉强度为1294MPa,比淬火前提高了97%;强塑积比淬火后的整体22MnB5热成形钢板提高...  相似文献   

4.
超高强钢板热成形工艺能够实现"白车身"轻量化的同时提高其防撞安全性,能很好地解决目前汽车制造业"节能"和"安全"两大问题。本文以1.8 mm厚的BR1500HS热成形钢板为研究对象,研究了淬火工艺对其淬火组织、奥氏体晶粒尺寸和力学性能的影响。其最佳奥氏体化工艺为920℃保温5 min,淬火后的显微组织为均匀的板条马氏体,其抗拉强度高达1789 MPa,延伸率达到7.5%,强塑积为1.34×104MPa·%。根据优化的淬火工艺进行的热压淬火试验研究表明,淬火后板材的组织主要为板条马氏体,压淬件的抗拉强度高于1500 MPa,完全满足BR1500HS钢热成形件的使用要求,具有重要的工程意义。  相似文献   

5.
采用光学显微镜及透射电镜观察,并进行力学性能试验,研究了固体介质持压淬火和热冲压两种条件下B1500HS钢板的微观组织形貌和力学性能,分析了形变对热冲压钢板强化的作用机理。结果表明:加热温度950℃,保温5min的条件下,固体介质持压淬火与热冲压后钢板金相组织均为板条状马氏体和少量残余奥氏体,材料强度大幅提升,抗拉强度分别达到1265、1448 MPa;相比固体介质持压淬火,热冲压成形试样中马氏体含量提高10.06%;热冲压形变强化相变,细化马氏体,位错密度增加并促进碳化物析出;高密度位错、细晶强化和析出强化的共同作用,提高了材料力学性能。  相似文献   

6.
采用盐浴炉对B800NQ钢进行了不同加热温度和时间的淬火,用扫描电镜对热处理试样显微组织进行了观察,并用万能拉伸试验机对力学性能进行了检测。结果表明,淬火温度为930℃时,显微组织主要是板条马氏体,随着加热时间的增加马氏体组织变化不大,力学性能略有提高;淬火温度为960℃时,显微组织全部为板条马氏体,随着加热时间的增加,马氏体板条略有粗化,屈服强度逐渐降低,抗拉强度和伸长率先略有增加,在超过60 s时有所降低。  相似文献   

7.
采用OM、SEM、EBSD和TEM等技术,研究了Si、Mn含量对超高强度热成形钢在相同的轧制和模拟热冲压成形工艺处理后的组织和性能的影响。结果表明,Si、Mn含量对热成形前轧制态钢的组织和性能有较大影响,在其它成分相同的情况下,随着Mn含量(质量分数)由0.57%增加到1.21%,实验用钢的屈服强度由552 MPa提高到751 MPa,抗拉强度由757 MPa提高到1124 MPa,组织由贝氏体+铁素体+珠光体转变为马氏体+贝氏体。随着Si含量由0.25%增加到0.38%,实验用钢的抗拉强度逐渐升高,屈服强度和伸长率呈波动趋势。在950℃保温5 min相同的工艺条件下模拟热冲压淬火实验后,4种钢的组织均为马氏体,但马氏体的精细结构各不相同,平均亚晶粒尺寸大小不一;含0.34%Si和1.21%Mn的钢B的综合力学性能最优,其屈服强度为1161 MPa,抗拉强度为1758 MPa,伸长率为6.5%,且热冲压成形后的组织为细小的板条马氏体,马氏体板条上有大量的位错,且只有少量的碳化物析出。基于本研究成分设计的超高强度热成形钢,其热冲压成形前的组织和性能与热成形后的力学性能无明显相关性,只是最终的马氏体精细结构略有差别,有利于工业化批量试制零件的性能稳定性控制。  相似文献   

8.
耿志宇  张宇  薛晗  薛峰  周天鹏 《金属热处理》2022,47(11):192-198
通过热力学计算软件Thermo-Calc计算了2000 MPa热成形钢的平衡相图、各相的析出温度、相中的元素含量、碳化物在不同温度下的长大规律以及不同Nb、V含量对其碳化物析出温度和析出量的影响规律。选定特定成分,利用50 kg真空炉进行了熔炼,并进行热轧和冷轧,利用平板模具淬火的方式模拟热成形工艺并进行了力学性能检测和三点弯曲性能检测。利用场发射扫描电镜和EBSD对组织进行了表征。结果表明,Nb、V微合金化2000 MPa热成形钢中的碳化物主要有NbC和VC,析出温度分别在1150 ℃以上及880 ℃以上,且其析出温度分别随着Nb和V含量的升高而升高。平板模具淬火后热成形钢板的抗拉强度超过2000 MPa,伸长率超过8%,拉伸断口为韧性断口,且三点弯曲角度超过66°。SEM和EBSD的结果表明,马氏体组织由马氏体束(packet)、马氏体块(block)和马氏体板条(lath)组成,原奥氏体晶粒约为10 μm,且马氏体块的尺寸<5 μm,马氏体块内部由马氏体板条组成,马氏体板条间为不连续的小角度晶界,晶界的取向差大部分小于5°。细小的原奥氏体晶粒和马氏体块组织是微合金化2000 MPa热成形钢具有高强度、高塑韧性的主要原因。  相似文献   

9.
对高强度22MnB5钢板采用快速电阻加热方法,并与传统炉子加热作比较,研究了钢板在加热过程中的组织演变规律。以炉子加热(~10℃/s)和电阻加热(~100℃/s)两种速率把试样加热到不同温度、保温不同时间后水淬,观察试样的显微组织并测试力学性能。结果表明,22MnB5钢板使用传统炉子加热时其过热度为70℃左右,电阻加热的过热度比炉子加热时增加了约50℃,加热温度达到各自临界转变温度后淬火组织为马氏体和少量铁素体。使用炉子加热到相应温度后保温一段时间,转变的奥氏体量比未保温的多10%左右。钢板电阻加热并淬火后其抗拉强度为1 536.4 MPa,延伸率为6.8%,达到超高强度钢板要求。  相似文献   

10.
对汽车车身用的22MnB5高强钢板在热冲压成形中的组织和力学性能进行了研究。结果表明:22MnB5钢板热冲压后,材料的微观组织由铁素体和珠光体转变为均匀的板条马氏体,且硼元素在热冲压过程中发生偏聚。热冲压可以极大地提高22MnB5钢的强度和硬度,降低材料的伸长率。  相似文献   

11.
采用热膨胀仪研究了22Mn B5钢连续冷却转变特性,并对热冲压零件的力学性能以及显微组织进行了研究。结果表明,880℃及以上温度奥氏体化,快速冷却后主要发生奥氏体向马氏体的转变,但当奥氏体化加热温度降低到820℃时,冷却后的组织中存在明显的铁素体。热冲压方式制造的22Mn B5钢试样具有良好的力学性能,抗拉强度能够达到1 500 MPa,屈服强度能够达到1 000 MPa。显微硬度达到450HV以上。  相似文献   

12.
采用数值模拟与试验相结合的方法,研究了汽车B柱22Mn B5高强度钢热冲压成形工艺。根据对B柱零件结构的分析,设计模具型面,并合理添加压料板。建立B柱热冲压有限元模型,设置板料加热温度、模具温度、压料板的压力、冲压速度、淬火保压压力等工艺参数,确定工艺参数方案。对B柱热冲压进行全过程数值模拟,得到了热冲压件的厚度、微观组织、硬度等性能分布情况,并与试验结果进行对比。热冲压件性能检测结果表明:零件的厚度分布较均匀,最大减薄率小于25%,平均硬度达到470 HV以上,平均抗拉强度达到1400 MPa以上,显微组织为均匀板条状马氏体。成形后的B柱各项性能均满足热冲压技术规范要求,表明了该B柱热冲压成形工艺的可靠性。  相似文献   

13.
《热处理》2020,(3)
低碳高强度Q690D钢适用于大型工程的结构件。对含碳量为0.14%~0.16%(质量分数)、厚度为100 mm的Q690D钢板进行了920℃水淬和分别于560℃、580℃及620℃回火处理。分别检测了钢板淬火态及淬火和不同温度回火后的显微组织和力学性能,以研究回火温度对钢板组织和性能的影响。结果表明:①淬火并经3种温度回火的钢板的力学性能均满足标准要求,随着回火温度的提高,强度略有下降,620℃回火的钢板屈服强度为810 MPa,抗拉强度为880 MPa,断后伸长率达16.5%,-20℃纵向冲击吸收能量达137 J;②淬火后钢板从表面到心部的组织均为板条马氏体和少量板条贝氏体,经560℃、580℃、620℃回火后,其组织为回火索氏体加板条贝氏体。综合起来看,大厚度Q690D钢板淬火后的回火温度以620℃最佳。  相似文献   

14.
以一种新型具有低奥氏体化温度和高淬透性的第三代汽车钢0.1C-5Mn冷轧板为原材料,按照与热成形基本一致的工艺流程,成功试制出温成形零件。结果表明:温成形钢板的加热温度比传统热成形温度低100~150℃;温成形模具较热成形模具简化;温成形工艺成本更低、效率更高。温成形后的零件尺寸精度高、形状复杂,对在温成形后的零件上截取的试样进行板拉伸试验,试样的抗拉强度不小于1.3 GPa,且伸长率大于12%,说明其力学性能尤其是塑性优于以22Mn B5钢为原料的热成形零件。研究表明,温成形钢及其汽车安全结构件可逐步替代、升级传统22Mn B5热成形钢汽车安全结构件。  相似文献   

15.
将汽车用含B钢板材22MnB5-10V(简称Y222)和26MnB5-5V(Y371)加热至960℃后进行不同冷却试验,通过金相组织分析、SEM形貌观察、XRD物相分析和显微硬度测试研究不同冷却速度对含B钢组织和性能的影响。结果表明,随着冷却速度的提高,含B钢板材的热处理组织由随炉冷得到的沿轧制方向呈带状分布的珠光体、铁素体组织和开炉冷却得到的等轴状珠光体和铁素体组织逐步转变为空冷后以粒状和板条状贝氏体为主的组织;在风冷条件下得到马氏体组织;在油冷条件和水冷条件下得到单一的板条马氏体组织,且淬火的冷却速度越快,板条马氏体的板条束越细。因此,材料中微量的B可有效提高材料的淬透性,材料的硬度随冷却速度的提高不断增大。  相似文献   

16.
钢板热冲压新技术介绍   总被引:7,自引:0,他引:7  
钢板热冲压是一种将先进高强度钢板加热到奥氏体温度后快速冲压,在保压阶段通过模具实现淬火并达到所需冷却速度,从而得到组织为马氏体,强度在1500MPa左右的超高强度零件的新型成形技术。文章对钢板热冲压新技术的关键装备、核心技术和优缺点做了系统介绍,并指出了其使用现状和前景。  相似文献   

17.
以经酸连轧后的34MnB5钢为原料,采用Gleeble3500热模拟试验机模拟退火试验,分析最佳退火温度,并进行不同热冲压工艺的平模淬火试验。研究退火温度、淬火温度对热成形钢组织与性能的影响。结果表明,退火温度为790℃时,条带状组织已基本消失,晶粒的等轴化程度较高,混晶现象明显改善,贝氏体晶粒组织细化,在基体内部均匀分布铁贝两相。退火温度为790℃,淬火温度为930℃,保温5 min时,显微组织为细小均匀的板条马氏体,综合力学性能最好,其屈服强度达到1353 MPa,抗拉强度达到2018 MPa,伸长率达到7.5%,且横纵向三点弯曲角均可以达到50°以上。  相似文献   

18.
为研究热冲压工艺参数加热温度、保温时间及冷却水流速等对热冲压零件微观组织及力学能的影响,对TRIP钢在不同工艺参数条件下进行热冲压成形工艺试验,测量冲压件的力学性能并观察其显微组织。结果表明,TRIP钢板经过热冲压成形并淬火后,形成均匀细小的马氏体组织,抗拉强度大大提高。并确定了热冲压工艺参数的最佳选择范围为加热温度810~860℃、保温时间150~250 s、冷却水速度大于0.7 m/s。  相似文献   

19.
用金相显微镜观察了加热温度和保温时间对22MnB5钢板组织结构的影响,测量了不同工艺处理后试样的抗拉强度和硬度。结果表明:加热温度高于860℃可保证淬火后的组织为完全马氏体,但更高的温度会降低抗拉强度和硬度;保温时间的延长也会使淬火后的钢板抗拉强度和硬度稍有下降;22MnB5钢淬火后的完全马氏体组织具有超高的抗拉强度和硬度,最高可达1690 MPa和555 HRV;为获得最优的抗拉强度和硬度,是理想的加热温度为860~900℃、保温时间为3~5 min。  相似文献   

20.
利用扫描电镜(SEM)、透射电镜(TEM)等试验方法,对实验室试制NM600耐磨钢热轧后淬火态钢板在不同温度回火后的组织和力学性能进行了观察和测量,研究了回火温度对组织和力学性能的影响。结果表明,热轧淬火态试验钢经回火处理后,随着回火温度的升高,显微组织由板条贝氏体+少量马氏体,逐渐过渡到粒状贝氏体+弥散的碳化物;贝氏体板条和马氏体板条发生溶解,位错密度降低;在温度高于200℃时,贝氏体铁素体板条的溶解,析出的碳化物所产生的强化作用已经不再明显,导致试验钢的各项力学性能出现下降。综合分析可知,试验钢在200℃回火时可获得较为优良的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号