首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了铸态和热处理态多相V60Ti20Ni20氢分离合金的异步轧制性能,异速比对合金显微组织、硬度和织构系数的影响。研究表明,异步轧制工艺提升合金轧制性能的效果高于热处理工艺提升的效果。热处理加异步轧制能够有效大幅提升合金的轧制成形性能。合金异步轧制性能随着异速比增加而增加,合金的硬度几乎不随轧制异速比的变化而变化。高的轧制压下量下,合金呈现出明显流变特征,V基固溶体(Vss)和NiTi 相变形量大,沿轧制方向变形伸长,成层状组织。随着合金轧制异速比增加,合金显微组织沿厚度方向逐渐出现低程度的不均匀变形,中心位置变形程度高于同步轧制。异步轧制沿厚度方向引入的剪切变形能在一定程度上弱化合金的轧制织构。  相似文献   

2.
采用异步轧制(AR)工艺和同步轧制(NR)工艺制备了AZ31镁合金板材,分析了AZ31镁合金板材的组织性能和力学性能,研究了轧制过程中孪晶组织和织构的演变规律,以及异步轧制工艺参数对镁合金板材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,异步轧制与同步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使异步轧制与同步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;当压下量达到24%时孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替性变化,异步轧制板材在压下量达到24%时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到16.3%。  相似文献   

3.
采用不同异速比对6061铝合金进行了异步冷轧,研究了不同异速比下累积的不均匀变形对其组织和性能的影响。结果表明:随着异速比(1.14~1.39)的增大,6061铝合金板材的晶粒逐渐细化,抗拉强度和伸长率有所增加;当压下量为50%、异速比为1.39时,合金的晶粒最均匀细小,平均晶粒尺寸约为77.6μm,抗拉强度为380 MPa,伸长率达到32.5%。  相似文献   

4.
《塑性工程学报》2015,(3):54-57
采用模压变形(GP)法变形工业轧制态低碳钢板材,研究GP变形对轧制态低碳钢板材组织结构和力学性能的影响规律。结果表明,GP变形能够显著细化板材的晶粒尺寸,且随着变形道次的增加,试样晶粒不断细化、均匀化。GP变形后试样的显微硬度、屈服强度及抗拉强度均显著高于工业轧制态板材,且变形后试样的伸长率随变形道次的增加而缓慢增加。  相似文献   

5.
采用同步轧制(NR)和异步轧制(AR)工艺对AZ31镁合金挤压板材进行了轧制,研究了轧制过程中组织和织构的演化,以及总压下量和异步比对轧材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,同步轧制与异步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。轧制过程中,在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使同步轧制与异步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;而当压下量达到24%时,孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替变化;异步轧制板材在压下量达到24%左右时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到0.163。  相似文献   

6.
研究了TA7钛合金板材热加工态和经750、800、850℃3种不同温度热处理后的显微组织、室温拉伸性能、弯曲性能、高温拉伸性能和高温持久性能。结果表明,热加工态TA7钛合金板材横向存在不均匀组织,纵向有较多拉长α晶粒;经750℃热处理后板材拉长α晶粒转变为等轴状;经800℃热处理后板材横向与纵向均为均匀、细小的等轴组织;经850℃热处理后板材晶粒发生长大。热处理后板材强度降低,塑性增加,弯曲性能和高温持久性能均满足GJB 2505A—2018标准要求;随着热处理温度的升高,板材室温拉伸强度和高温拉伸强度均逐渐降低,经850℃热处理后板材的500℃高温拉伸强度已不能满足要求。为了获得均匀、细小的组织及良好的力学性能,TA7钛合金板材宜采用800℃热处理。  相似文献   

7.
采用1.0、1.2、1.4和1.6的轧制异速比对高温退火CrCoNi中熵合金进行室温和深冷异步轧制,并对轧后的材料在873、973和1073 K退火处理0.5h.采用透射电子显微镜对轧制态样品进行微观表征,发现轧制态合金晶粒尺寸随着异速比增加而减小,且存在明显的孪晶.室温异步轧制实验显示,轧制后轧制态和退火态合金的抗拉...  相似文献   

8.
对挤压态Mg-6Zn-0.55Zr合金进行了轧制试验,并采用光学显微镜、万能试验机研究了轧制及轧制后退火对挤压态Mg-6Zn-0.55Zr合金显微组织与力学性能的影响。结果表明:挤压态合金经轧制温度320℃,道次压下率为60%、30%、10%的3道次轧制,板材边缘无裂纹产生,表面质量良好。轧制态合金的晶粒内有大量孪晶与位错,经240℃×1 h退火后,合金完全静态再结晶,等轴晶粒较为细小、均匀,合金的抗拉强度和伸长率分别达到316 MPa和29.6%,综合力学性能最佳。  相似文献   

9.
在250 ℃对轧制-热处理态ZK60镁合金板材进行9道次不同路径的轧制试验。采用光学显微镜、电子万能试验机、SEM、XRD等研究了轧制试验后ZK60镁合金的显微组织、室温拉伸性能、断口形貌及晶粒择优取向。结果表明:轧制路径对ZK60镁合金板材的晶粒尺寸变化无明显影响,但压下量对镁合金组织内的孪晶变化有很大影响;轧制路径的变化对ZK60镁合金板材的各向异性和力学性能有较大影响,在交叉+45°的路径下轧制后ZK60镁合金板材,各向异性较弱,具有良好的综合力学性能和轧制成形能力,其屈服强度、抗拉强度和伸长率分别达到244.31 MPa、371.14 MPa和25.46%;交叉+45°路径轧制对ZK60镁合金的晶粒择优取向有明显影响,能够改善镁合金板材的晶粒择优取向和各向异性,提高ZK60镁合金的力学性能。  相似文献   

10.
在250、300、400℃下分别对Al-0.75Mg-0.75Si-0.8Cu-0.7Zr合金进行大应变轧制变形,采用拉伸性能测试和扫描电镜(SEM)等研究了轧制温度对不同处理态合金显微组织和力学性能的影响。结果表明:在250℃轧制时,Al-0.75Mg-0.75Si-0.8Cu-0.7Zr合金的抗拉强度为204 MPa,伸长率为15.2%;随着轧制温度的升高,强度逐渐降低,而伸长率不断增大;合金经300℃热轧+510℃×80 min+195℃×13 h+冷轧加工后的晶粒最为细小,其综合力学性能最好,抗拉强度为475 MPa,伸长率为8.13%,断口上分布着大量细小均匀的韧窝。  相似文献   

11.
轧制工艺对Mg-10Gd-4.8Y-0.6Zr合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
Mg-10Gd-4.8Y-0.6Zr铸态合金经525℃、16 h均匀化退火后,在500℃轧制成总变形量为84%的板材,轧制后在200℃进行时效处理。观察合金的微观组织变化,并测试合金的力学性能。结果表明:轧制变形明显细化了晶粒尺寸,轧制后组织中存在方块相和长条状相;轧制初期组织中存在大量孪晶,孪晶能很好地协调塑性变形,并诱发了孪生动态再结晶;随着轧制变形量的增大,孪晶数量减少,再结晶方式以晶界弓出形核为主。轧制T5态合金具有优异的高温力学性能,200、250、300和350℃时抗拉强度分别为392、381、251和112 MPa,350℃拉伸时伸长率达到107.0%。  相似文献   

12.
《塑性工程学报》2015,(3):121-126
通过光学显微镜、扫描电镜、能谱分析及力学性能测试等手段,研究轧制和热处理工艺对Mg-11Li-3Al-1.5Si-1.5Nd合金板材组织和力学性能的影响,探讨其析出相在合金中的作用。结果表明,铸态合金经过均匀化处理后,汉字形貌的Mg2Si相溶入基体,其综合性能大幅下降。但在随后的轧制过程中,合金的力学性能得到双重提升。合金板材经过淬火处理后,晶粒非常细小,主要由β-Li基体和沿轧制方向分布的少量颗粒状Mg17Al12相组成,抗拉强度最大可达344.3MPa。而退火处理后,其仍保留轧制态的组织,但随着退火温度的升高,析出的白色α-Mg相逐渐减少,板材的抗拉强度略微下降,而塑性则呈先升后降再升高的趋势,其中220℃×1h退火板材的塑性最好,其伸长率为73.1%。  相似文献   

13.
采用显微组织分析、硬度测试、拉伸测试、SEM断口分析等手段,研究了热处理工艺对大应变轧制Al-Mg-Si-Cu合金板材显微组织及力学性能的影响。研究表明:轧制态Al-Mg-Si-Cu合金中轧制面组织呈纤维状且存在大量残留相。合金经固溶后显微组织中残留相基本溶解,晶粒得到小幅度长大,在时效处理后强化相均匀析出,使得合金得到强化效果。合金经510℃/80 min固溶和195℃/13 h时效热处理后,测试硬度值为127.1 HV,抗拉强度为410 MPa,伸长率达24.8%,断口分析为韧性断裂,合金表现出良好的力学性能。  相似文献   

14.
通过异步/同步热轧实验研究了异步热轧工艺对钛合金显微组织和力学性能的影响。实验表征了试样的显微组织、力学性能、断口形貌和微观取向。结果表明,复杂应变路径较之简单应变路径能更好地细化晶粒,同时提高强度和塑性,并且表层晶粒小于中心晶粒。异步轧制工艺相比同步轧制能更好地获得细小晶粒。异步轧制试样的强度及塑性值高于同步轧制试样相应值,提高异步速比可提高强度及塑性值。异步轧制试样的塑性变形机制可能是滑移,而同步轧制试样塑性变形机制为滑移或孪晶。  相似文献   

15.
通过异步/同步热轧实验研究了异步热轧工艺对钛合金显微组织和力学性能的影响。实验表征了试样的显微组织、力学性能、断口形貌和微观取向。实验结果表明,复杂应变路径较之简单应变路径能更好的细化晶粒及同时提高强度和塑性,并且表层晶粒小于中心晶粒。异步轧制工艺相比同步轧制能更好获得细小晶粒。异步轧制试样的强度及塑性值高于同步轧制试样相应值,提高异步速比可提高强度及塑性值。异步轧制试样的塑性变形机制可能是滑移,而同步轧制试样塑性变形机制为滑移或孪晶。  相似文献   

16.
由喷射沉积制备Al-12Zn-2.4Mg-1.2Cu(质量分数,%)合金的沉积锭,以不同挤压变形方式制备成Ф100 mm棒材、Ф100 mm×Ф80 mm无缝管材以及160 mm×15 mm的板材。通过光学显微镜、扫描电镜以及力学性能试验研究了不同挤压制品热处理态的组织和力学性能。沉积态合金的显微组织中,晶粒为等轴晶,大小约20μm。在挤压变形过程中,以冶金焊合的方式消除了原先分布在沉积态中晶粒周围的沉积孔隙。不同挤压制品的挤压方向上,金属流线清晰可见。挤压制品的抗拉强度,屈服强度及延伸率测试结果表明:热处理后的棒材横向分别为688 MPa、654 MPa和12%,纵向分别为698 MPa、674 MPa和10.5%;热处理后的板材横截向分别为783 MPa、748 MPa和7%,纵向分别为751 MPa、719 MPa和8%;热处理无缝管材的纵向分别为781 MPa、735 MPa和9%。拉伸断口显示,板材、无缝管材以及挤压板材对应的断口分别呈现出韧性断裂、混合型断裂以及脆性断裂形貌特征。  相似文献   

17.
采用异速异步轧制技术,对翼缘板钢分别进行累计九道次冷轧,用光学显微镜、电子扫描显微镜观察轧件的显微组织。结果表明:在相同的压下量下,随着异速比增大,晶粒长度和高度的比值也增大,用晶粒长高比值可以在一定程度上反映异步轧制对轧件所受附加剪切变形影响关系。对冷轧后的轧件进行了拉伸和退火实验,结果表明:随着异速比增大,抗拉强度增加,晶粒平均直径变小,异步轧制与同步轧制相比应变储能更高,可以产生更多的位错和亚晶。  相似文献   

18.
采用了XRD织构衍射法对异步轧制后的1235铸轧铝合金板材织构进行了检测,研究了异步轧制中的异速比对1235铝合金铸轧板材厚度织构均匀性的影响。结果表明:铸轧坯料织构在厚度很不均匀,其表层以旋转立方织构为主,中心层以Cu、S和Bs织构的β取向线为主;异步轧制能有效降低1235铝合金铸轧板材厚度织构的不均匀性,即:表层和中心层都以β取向线织构为主,其中异速比为1.2时的效果最好。  相似文献   

19.
分别采用以同步轧制和异步轧制为预变形方式的应变熔化激活法(SIMA)制备7075铝合金半固态坯料,研究了辊径比和等温保温温度对预变形板材热处理过程中组织演变的影响。结果表明:随等温温度的升高,初生固相晶粒内生成大量液相,固相晶间冷却后出现大量共晶相。在相同的热处理条件下,异步轧制预变形工艺能够比同步轧制预变形工艺获得更多液相,且半固态进程更迅速;获得半固态坯料的优化工艺条件为异步轧制作预变形、等温温度选择610 ℃。  相似文献   

20.
通过对镍基合金GH80A进行大变形异步与同步轧制,制备了纳米组织材料,研究了退火处理对纳米组织GH80A材料的组织与力学性能的影响。结果表明,大变形轧制后的材料的晶粒细化至约50 nm,其抗拉强度从646 MPa提升至1787 MPa,在700℃下进行退火处理后,抗拉强度可以达到2111 MPa;退火温度对取向影响不大。所制备的超细晶材料具有良好的组织热稳定性,在700℃下退火,晶粒尺寸约150 nm,在800℃下退火1 h,晶粒尺寸仍然能够保持在250 nm以下。分析认为,超细晶镍基GH80A材料的组织稳定性与强度的显著提高与γ'相的析出有直接关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号