首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用DIL805A淬火变形膨胀仪对新型Cr3型热作模具钢4Cr3Mo2V进行过冷奥氏体连续冷却转变和过冷奥氏体等温转变试验,研究了冷却速度对相变组织和硬度的影响,绘制了Cr3钢的CCT曲线和TTT曲线,并与Cr5型4Cr5Mo2V钢的CCT曲线和TTT曲线进行对比。结果表明,Cr3钢的Ms=320℃,Ac1=795℃,Accm=895℃。当Cr3钢以不同速度连续冷却时,分别出现了珠光体转变、贝氏体转变和马氏体转变。与Cr5钢相比,Cr3钢的CCT曲线左移,淬透性降低。Cr3钢的TTT曲线呈“双C型”,贝氏体转变区的温度范围在320~410℃,珠光体转变区的温度范围在650~750℃,“鼻尖”温度出现在715℃左右,珠光体转变结束所需时间为17 882 s。  相似文献   

2.
利用L78RITA淬火热膨胀仪研究了X80管线钢过冷奥氏体转变的相变规律,结合金相-硬度法绘制了试验钢的连续冷却转变(CCT)曲线。结果表明,随着冷却速率的增加,X80管线钢过冷奥氏体分别发生了铁素体、贝氏体、马氏体转变;冷速小于3℃/s时,组织为铁素体和贝氏体;冷速在3~20℃/s时,组织只有贝氏体;冷速大于40℃/s时,组织中开始出现马氏体,且随着冷速的进一步增大,马氏体的含量逐渐增多,贝氏体逐渐减少直至消失。试验钢硬度随着冷却速率的增加呈逐步升高的趋势。在CCT曲线基础上,建立了相变点温度-冷却速率关系模型,并通过回归计算得到拟合度较高的相变模型,且模型计算值与试验值之间能够很好的地吻合,证明了该相变模型的可行性。  相似文献   

3.
利用热膨胀法,结合金相法、硬度法测定了23Cr Ni3Mo钢过冷奥氏体的连续冷却转变(CCT)曲线;并分析了连续转变过程中钢的组织和硬度。结果表明:试验钢在冷却速度为0.1~0.3℃/s时,得到铁素体和贝氏体的混合组织;冷却速度为0.5~5℃/s时,得到综合性能优良的下贝氏体组织;冷却速度≥10℃/s时,得到主要为板条状马氏体的组织,在温度-时间对数曲线上出现了明显的由马氏体相变引起的"拐点"。随着冷却速率的增大,23Cr Ni3Mo钢的硬度逐渐增大,最终稳定在490 HV0.2左右。  相似文献   

4.
采用DIL805L型膨胀仪研究了弹簧钢52Cr Mo V4连续冷却相变组织变化规律,分析了合金元素和冷却速度对CCT曲线、相变组织和显微硬度的影响。结果表明:Cr、Mo、V、Mn等元素的加入使得弹簧钢52Cr Mo V4珠光体和贝氏体转变曲线完全分离,可以在较宽的冷却速度范围内得到马氏体+贝氏体组织,当冷却速度大于等于5℃/s时,连续冷却转变获得单一的马氏体组织。冷却速度增加,促使了连续冷却转变后的组织细化,显微硬度增大。  相似文献   

5.
采用热膨胀法在Gleeble-3800热模拟机上测定了E690海洋平台用钢的相变临界点。同时测定了过冷奥氏体在不同冷却速度下连续转变时的膨胀曲线,绘制了其静态CCT曲线。结合金相-显微硬度法,分析了不同冷却速度对E690海洋平台用钢组织性能的影响。结果表明:冷却速度为0.05到0.5 ℃/s时,冷却转变的产物为粒状贝氏体;当冷速增加,达到0.1~3 ℃/s后,板条状贝氏体明显增多;冷却速度超过5 ℃/s后,冷却产物为板条贝氏体和板条马氏体。  相似文献   

6.
利用DIL805L淬火相变膨胀仪研究了齿轮钢16Mn Cr的过冷奥氏体连续冷却转变行为,结合金相-硬度法,绘制静态CCT曲线。结果表明:试验钢在冷速小于0.2℃/s时,室温下获得铁素体+珠光体组织,冷速大于0.5℃/s,室温下试验钢中出现贝氏体组织,冷速大于5℃/s,试验钢中出现马氏体组织;随着冷速的增加,铁素体、珠光体减少,铁素体的形态由多边形向针状发展,硬度由146 HV30增大至380 HV30。由于Mo推迟了铁素体、珠光体转变,降低了获得铁素体的临界冷速,试验钢获得铁素体+珠光体组织的冷速范围较窄。  相似文献   

7.
使用DIL805L型膨胀仪分析了曲轴钢的相变规律,得到了其奥氏体连续冷却转变曲线(CCT)。结果表明,试验钢的临界点为:Ac1=682 ℃,Ac3=765 ℃;当冷速为0.2~5 ℃/s时,转变产物为铁素体+珠光体;当冷速大于5 ℃/s时,转变产物为铁素体、珠光体、贝氏体与马氏体的混合组织;当冷速增大到15 ℃/s时,转变产物为贝氏体和马氏体组织;冷速越大冷却后马氏体含量越多,硬度逐渐增加。  相似文献   

8.
利用DIL805A型淬火变形膨胀仪,测定了WQ960E工程机械用钢以不同冷却速度连续冷却时的膨胀曲线,并结合金相-硬度法,获得该钢的过冷奥氏体连续冷却转变曲线(CCT曲线).根据CCT曲线,结合光学显微镜与扫描电镜分析结果,研究了冷却速率对相变组织演变规律的影响.结果表明:当冷速为0.06℃/s时,相变组织为铁素体(F)+粒状贝氏体(GB);冷速为0.2℃/s时,组织为粒状贝氏体(GB);冷速为0.5℃/s时,开始出现板条贝氏体(LB);冷速为5℃/s时,出现马氏体(M).  相似文献   

9.
新型耐候钢连续冷却转变曲线的测定   总被引:5,自引:1,他引:5  
用膨胀法结合金相法,在gleeble1500热模拟机上测定了新型耐候钢0.14C-1.43Mn-0.69Si-0.79Al的连续冷却转变曲线(CCT曲线).结果表明,CCT曲线上珠光体和贝氏体的转变区分开,且在珠光体和贝氏体转变区域之间不存在奥氏体亚稳区.冷却速度小于1℃/s,转变产物为铁素体和珠光体;冷却速度为1℃/s,开始出现少量粒状贝氏体;随冷却速度的增大,铁素体和珠光体含量逐渐降低,贝氏体含量逐渐增多;冷速在5~30℃/s范围内,转变产物主要为铁素体和贝氏体;冷速大于30℃/s,马氏体开始出现;冷速达到80℃/s时,贝氏体消失,转变产物为马氏体;水淬的组织全部为马氏体.奥氏体区变形使铁素体转变区向左上方移动,贝氏体转变区向左下方移动.  相似文献   

10.
在Gleeble- 1500热模拟试验机上测试了ZG80CrMnMo钢的奥氏体连续冷却转变曲线(CCT曲线),并检测了不同冷却速度下转变产物的显微组织和硬度.研究了以1℃/s至45℃/s冷速连续冷却时的组织转变规律.结果表明,CCT曲线明显右移,珠光体和贝氏体转变被抑制,在所研究的冷却范围内容易得到马氏体+残余奥氏体组织.所测得的ZG80CrMnMo钢的CCT曲线可为生产马氏体钢提供参考.  相似文献   

11.
采用DIL805L热膨胀仪,研究了20MnCr5齿轮钢连续冷却相变的组织变化规律,并分析了合金元素对奥氏体连续冷却转变曲线(CCT)的影响。结果表明:Mn、Cr、Ni、Al元素的加入细化了晶粒,使得20MnCr5齿轮钢中的珠光体、贝氏体和马氏体转变曲线完全分离,且可以在较宽冷却速度范围内得到马氏体+贝氏体组织。当冷速大于60℃/s时,才能得到单一马氏体组织。并且随冷速增加,冷却后组织逐渐细化,硬度增大。  相似文献   

12.
采用热膨胀-显微组织-显微硬度相结合的方法,绘制了1.0 GPa级冷轧增强成形性双相钢的静态连续冷却转变曲线(CCT曲线),并研究了退火工艺对实验钢显微组织与力学性能的影响。结果表明:实验钢过冷奥氏体冷却转变过程主要存在铁素体相变区、贝氏体相变区和马氏体相变区的3个相变区;当冷速低于1℃/s时,实验钢主要发生铁素体与贝氏体相变,并存在少量马氏体相变;当冷速在3~20℃/s之间时,发生马氏体与贝氏体相变;当冷速达到30℃/s及以上时,完全发生马氏体转变。随冷却速率的增加实验钢的显微硬度逐渐增大,前期显微硬度提升较快,冷速达到20℃/s后逐渐趋于平稳,与对应冷速下的显微组织一致。实验钢的组织主要为铁素体、马氏体和残留奥氏体,三者匹配有利于变形过程基体强塑性的提升。当均热温度为810℃时,实验钢中残留奥氏体含量最高,为4.9%,变形过程中相变诱导塑性(TRIP)效应显著,力学性能最佳,屈服强度为791.7 MPa、抗拉强度为1041.7 MPa、伸长率为19.37%、强塑积达到20.18 GPa·%。  相似文献   

13.
采用膨胀法并结合金相法和硬度法,利用Gleeble-1500D热模拟试验机测定QP980钢在不同冷却速度下过冷奥氏体连续冷却时的膨胀曲线,利用Origin软件绘制QP980钢过冷奥氏体连续冷却相转变(CCT)曲线,分析冷却速度对QP980钢组织和硬度的影响。结果表明:QP980钢过冷奥氏体的冷却速度小于1.5℃/s时,主要发生铁素体、珠光体和贝氏体的转变;随着冷却速度的增加,铁素体软相组织不断减少,贝氏体等硬相组织不断增加,硬度值增加显著;冷却速度在2℃/s~10℃/s范围内主要发生贝氏体和马氏体的转变,硬度值变化较显著;冷却速度大于10℃/s时只发生马氏体转变,硬度值变化趋于缓慢。  相似文献   

14.
利用L78型淬火膨胀仪,测定了Si-Mn-Cr-Mo超高强钢以不同冷却速度连续冷却时的膨胀曲线,并结合金相-硬度法,绘制了该钢的过冷奥氏体连续冷却转变曲线(CCT曲线)。根据CCT曲线,结合光学显微镜与显微硬度分析结果,研究分析了冷却速度对相变组织演变规律的影响。结果表明,当冷却速度为0.04~0.1℃/s时,相变组织为铁素体(F)和贝氏体(B),冷却速度为0.2~2℃/s时,相变组织为贝氏体(B)和马氏体(M),冷却速度大于3℃/s时,相变组织为马氏体(M);且随着冷却速度的提高,硬度值也在提高。测定结果为该钢的控制冷却工艺提供了重要的理论依据。  相似文献   

15.
利用Formastor-FⅡ热膨胀相变仪测定了2. 25Cr1Mo0. 25V钢在连续冷却过程的热膨胀曲线,结合微观组织和显微硬度绘制了试验钢的连续冷却转变曲线。结果表明:试验钢在较低速度冷却时(0. 3℃/s)形成多边形铁素体和贝氏体的混合组织;连续冷却速度在0. 3~10℃/s之间的试样全部为贝氏体组织,且随冷却速度的提高,贝氏体形态由粒状逐步转变为板条状,其中板条贝氏体具有更高的硬度;相比于12Cr2Mo1R钢,2. 25Cr1Mo0. 25V钢的过冷奥氏体具有更好的稳定性。  相似文献   

16.
采用Gleeble 3500热模拟实验机研究了G20Cr Ni2Mo A轴承钢在连续冷却过程中的相变规律,结合膨胀曲线绘制出G20Cr Ni2Mo A钢连续冷却转变曲线,并对不同冷速下显微组织和维氏硬度进行分析。结果表明:在低速冷却时,在两相区先发生铁素体相变,随着冷速的增加,铁素体逐渐减少,基体内残留奥氏体增多,珠光体相变温度区间为600~700℃,贝氏体相变区间主要集中在400~600℃,马氏体转变温度为412℃,当冷速在0.5~5℃/s时,室温下获得贝氏体组织,当冷速大于10℃/s时室温下将获得马氏体组织。  相似文献   

17.
利用膨胀法结合金相-硬度法,在Formast-F全自动相变仪上测定了60mm厚Q690D钢连续冷却转变静态CCT曲线,研究了冷却速度对显微组织、硬度的影响。结果表明:当冷速小于1℃/s时,转变产物为铁素体、珠光体和贝氏体;当冷速为1~3℃/s,转变产物为铁素体、贝氏体;当冷速为5~40℃/s,转变产物为贝氏体、马氏体;当冷速大于40℃/s时,转变产物为完全马氏体;当冷速小于20℃/s时,显微硬度逐渐升高;当冷速在20~100℃/s时,显微硬度在390 HV左右。  相似文献   

18.
研究了两种新型超高强度钢30Cr3SiNiMoWNb和30Cr Ni5Si2MoNb奥氏体化后以30~3.5℃/min速度冷却的相变产物,及其对随后回火材料强韧性的影响。结果表明,30Cr3Si Ni MoWNb钢奥氏体化后以30和15℃/min冷却得到马氏体组织;以7℃/min冷却,过冷奥氏体的相变产物为马氏体和25%~30%的下贝氏体;以3.5℃/min冷却,过冷奥氏体的相变产物为珠光体、贝氏体和马氏体。30Cr Ni5Si2MoNb钢降低冷却速度后回火强度上升,韧性下降不大,在3.5℃/min冷速时强度达到最高值。与30Cr3SiNiMoWNb钢相比,30Cr Ni5Si2MoNb钢因其合金元素含量高,马氏体形成能力强,更难形成贝氏体和珠光体组织。  相似文献   

19.
利用L78RITA热膨胀相变仪和光学显微镜研究了30Mn2Cr钢过冷奥氏体连续冷却过程中的相变行为、组织及硬度演变规律,采用热膨胀法结合金相-硬度法建立了试验钢的CCT曲线。结果表明,在冷却速度为0.1~1℃/s时,试样组织为铁素体和珠光体;当冷却速度≥2℃/s时,试样组织中出现了少量贝氏体;随冷却速度的提高,铁素体和珠光体组织含量逐渐减少,贝氏体含量逐渐增加;当冷却速度≥10℃/s时,组织中出现了马氏体,珠光体组织消失;当冷却速度≥50℃/s,相变产物主要为马氏体。随着冷却速度的提高,试样的硬度逐渐升高。石油工业用管材采用30Mn2Cr时,建议全壁厚钢管的冷却速度大于50℃/s。  相似文献   

20.
利用热膨胀仪测得不同冷却速度下的膨胀曲线,采用切线法确定各冷速下的相变温度,结合显微组织和维氏硬度检测绘制出37Mn5钢的CCT曲线。结果显示,当冷却速度<5℃/s时,组织为铁素体和珠光体;冷却速度在5~40℃/s时,组织中形成贝氏体,冷速在5℃/s时开始发生贝氏体转变,10℃/s时开始发生马氏体转变;当冷却速度≥40℃/s 时,组织全部成为板条马氏体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号