首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
利用白云鄂博共伴生混合稀土(MM)制备了成分为(Pr Nd)14-x MMx Fe80.4B5.6的稀土永磁材料,MM替代30%Pr Nd合金,磁体磁能积为238.08 k J/m3,剩磁为1.18 T,矫顽力726.75 k A/m,发现La、Ce元素以氧化物的形式分布在富稀土相中,主相中存在(Nd Ce)2Fe14B固溶体,相比单独添加La、Ce的磁体,获得相同的磁性能时,(Pr Nd)14-x MMx Fe80.4B5.6磁体的La含量较高,磁体中混合稀土La、Ce、Pr、Nd的协同作用促进了MM的高效利用。利用高场动态磁畴显微镜观察了磁体的畴结构动态变化,磁体内部出现大量的穿晶畴,穿晶畴的畴壁可穿过晶界,磁化过程中磁畴扩展容易。  相似文献   

2.
随着市场对Nd-Fe-B永磁材料需求的不断增加,昂贵的Nd、Pr、Dy和Tb等关键稀土元素的消耗也日益增加,而廉价的Ce、La和Y等高丰度稀土元素积压严重。开发不含关键稀土元素的全高丰度永磁材料有望填补永磁铁氧体和黏结Nd-Fe-B磁体之间的性能空白,不仅可以满足中低端市场领域对永磁材料的多样化需求,也利于实现稀土资源的平衡利用。然而,目前针对Ce、La、Y基稀土永磁的理解和认识还有待深入,所获得的高丰度稀土永磁的性能普遍较低,难以实际应用。本文基于国内外最新进展和作者团队的研究工作,总结了近期关于不含关键稀土Nd、Pr、Dy和Tb的(Ce, La, Y)-Fe-B永磁合金和磁体的研究现状。重点关注了纳米晶快淬三元合金的相结构和冶金行为以及多元合金的成分设计与元素交互作用,详细阐述了全高丰度稀土基致密化磁体的制备工艺、显微组织与磁性能之间的关系。最后对全高丰度稀土永磁的未来发展趋势进行了展望。  相似文献   

3.
为了实现稀土资源的平衡应用且降低RE-Fe-B稀土永磁材料的价格,针对混合稀土基永磁材料进行研究,分别采用单、双主相工艺制备了名义成分[(Pr,Nd)1-xMMx]30.3(Fe,Co)balM0.73B0.98 x=0.3,0.5和0.7,质量分数)的磁体,对比研究其磁性能和抗腐蚀性。研究发现:双主相工艺制备的磁体相比单主相工艺制备的同成分磁体展现了优越的磁性能和抗腐蚀性。当x=0.5,双主相磁体的磁性能为Br=1.308 T,Hcj=799.98 kA/m和(BH)max=325.6436 kJ/m3,远高于同成分的单主相磁体的性能(Br=1.297 T,Hcj=746.8868 kA/m 和(BH)max=317.8428 kJ/m3)。这种改进源于富稀土相分布的改进以及主相晶粒间和晶粒内部耦合作用的增强。当双主相磁体暴露在湿热环境下时,磁体中不仅存在富稀土相腐蚀,也存在主相晶粒的腐蚀成粉现象,这主要是由于富稀土相与水蒸气和氧气反应时产生氢气,导致主相晶粒被氢化,由于主相晶粒间和晶粒内部的镧铈分布差异,产生大的应力,导致其表现出区别于单主相磁体的腐蚀行为。  相似文献   

4.
稀土永磁材料是迄今磁性能最强、应用最广泛的一类永磁材料。与传统的粗晶稀土永磁材料相比,纳米结构稀土永磁材料因其独特的显微组织结构而具有显著不同的磁性能,从而引发了研究者的广泛关注。全面回顾了近年来R-Co(R=Sm, Pr, Y, La)和R-Fe-B(R=Nd, Pr, Tb, Dy)体系纳米结构永磁材料的发展历程。重点介绍了用于R-Co和R-Fe-B纳米结构材料的制备方法,包括熔体快淬、高能球磨(HEBM)、表面活性剂辅助球磨(SABM)和机械化学合成等方法。还讨论了将纳米结构前驱体制备成块状磁体的先进技术,其中包括放电等离子烧结(SPS)、感应加热法(IHC)、冲击波压实(SWC)、燃烧驱动压实(CDC)、高压温压(HPWC)等方法。同时介绍了各向同性以及各向异性的纳米结构单相R-Co和R-Co/Fe纳米复合磁体的微结构特性和磁性能。讨论了各向同性和各向异性纳米结构单相R2Fe14B磁体,以及由硬磁相和软磁相组成的交换耦合纳米复合R-Fe-B/Fe(Co)磁体的磁性。  相似文献   

5.
利用混合稀土金属(MM=La,Ce,Pr,Nd)制备的MM-Fe-B磁体,矫顽力Hcj较低,因此研究添加不同含量的CuAl以及不同退火温度两种条件对MM-Fe-B烧结磁体的磁性能和微观结构的影响。研究发现,添加CuAl使磁体去交换耦合作用增强,改善了富MM相与主相的浸润性,细化晶粒。在添加质量分数CuAl为0.25%,且退火温度达到470℃时磁性能达到最优,Br=0.944T、Hcj=164.0kA/m和(BH)max=80.6kJ/m3,其中矫顽力Hcj变化最大,与未添加CuAl磁体矫顽力Hcj相比,增长率为44.1%。  相似文献   

6.
以双主相法制备不同Ce含量的烧结(CePrNd)-Fe-B磁体,研究不同回火温度下磁体的磁性能,并对微观组织断口进行BSE和EDS分析。结果表明:含Ce磁体的共晶温度和居里温度随Ce含量的增加呈减小的趋势;回火温度对烧结(CePrNd)-Fe-B磁体的剩磁影响不显著;Ce取代量为12%(质量分数)的磁体经回火温度410℃处理后,内禀矫顽力从762.6 kA/m上升到1357.2 kA/m,相应提高77.97%,方形度达到最佳值0.953。经410℃回火后,磁体主相晶粒间的微观结构形成的壳核结构,晶界分布着较多的条状富Nd相分布。富Nd相中的Ce含量增高,浸润性相对提高,因而有利于减少主相晶粒间的反向磁耦合,提高了室温和高温下磁体的内禀矫顽力。  相似文献   

7.
为了有效利用高丰度稀土,在重稀土扩散源Dy60Co40中添加Ce、La以取代Dy。研究了不同的Ce、La添加量对Dy60Co40晶界扩散烧结Nd-Fe-B磁体性能的影响。结果表明:Dy30Ce30Co40、Dy30(Ce0.4La0.6)30Co40晶界扩散均能大幅提升Nd-Fe-B磁体的矫顽力,分别为1509和1527 kA/m,相比原始Nd-Fe-B磁体的矫顽力分别提高了31.7%和33.2%,且剩磁和最大磁能积下降不明显。微观组织研究表明,Ce主要分布在晶界相中形成富Ce相,不利于Dy的扩散;而La的添加限制了Ce进入主相晶粒,促进了Dy的扩散,从而进一步提高了磁体的矫顽力。热稳定性研究发现,Ce、La的添加均能提高磁体的热稳定性,但是其提升效果均没有Dy60Co40扩散磁体明...  相似文献   

8.
研究采用放电等离子烧结(SPS)技术制备了掺杂不同含量的La-Ce-Cu合金的Nd-Fe-B热变形磁体;研究了掺杂量对磁体磁性能和微观结构的影响。结果表明,随着掺杂量的增加,热变形Nd-Fe-B磁体的矫顽力先增加后降低;而剩磁与磁能积均有所下降。磁体的矫顽力在掺杂量为1%(质量分数)时,达到最大值为1257kA/m。微观分析表明,掺杂合金中的La元素倾向于分布在富稀土相中,不易进入主相晶粒;而Ce元素则易取代Nd进入主相晶粒中。  相似文献   

9.
用双合金工艺在Nd13.05Dy0.23Fe80.12B6.5铸片主合金中添加质量分数为3%~20%的富稀土铸锭辅合金Nd38.2Gd11.8Fe44.88Al4.12B,研究稀土元素Gd部分取代Nd时对钕铁硼永磁体的磁性能和显微组织的变化规律。结果表明,Gd的加入不仅可改善钕铁硼磁体性能,也可节约Nd和Dy的用量。从显微结构可看出,组织中细小的颗粒状富稀土相增多,元素Gd主要富集于晶界处,形成了更多的对矫顽力有贡献的富稀土相。  相似文献   

10.
研究了Nd2Fe14B单晶、传统烧结NdFeB磁体和放电等离子烧结(简称SPS)NdFeB磁体在电解液溶液中的电化学特性。采用扫描电子显微镜和电子能谱分析了磁体的微观组织成分。结果表明在3.5%NaCI溶液的极化曲线中,Nd2Fe14B单晶具有最高的电化学腐蚀电位,放电等离子烧结NdFeB磁体的腐蚀电位高于传统烧结NdFeB磁体。与传统烧结NdFeB磁体相比,放电等离子烧结NdFeB磁体富Nd相具有独特的分布形态,主相Nd2Fe14B晶粒细小、均匀,富钕相在主相晶粒边界上分布较少,主要集中在三角晶界处。这种组织结构有效地抑制了磁体沿富钕相发生晶间腐蚀的过程,磁体因此具有良好的耐腐蚀性能。此外,从不同稀土含量的烧结NdFeB磁体的高压加速实验中可以看出磁体的腐蚀速度随稀土含量的增加而增大。以上结果表明富Nd相的化学特性及其分布状态和含量是决定合金耐蚀性能的关键,它在合金中以网络状分布在主相晶粒边界上,并决定了烧结NdFeB易于发生选择性晶间腐蚀,从而导致耐蚀性差。  相似文献   

11.
作为稀土应用主体的稀土永磁材料,近年来其应用领域和需求不断扩大,促使稀土永磁材料及其产业化技术的研究也呈现新的进展和特点。随着钕铁硼磁体在风力发电、混合动力汽车/纯电动汽车、节能家电等新兴领域中的应用拓展,推动了钕铁硼磁体在高性能和低成本方向的研发,并在高丰度稀土元素替代技术、重稀土减量化技术、新型热压/热变形技术等研究方面取得较大的进展。钐钴永磁材料在国防领域继续发挥不可替代的应用作用,近年来在高性能、耐高温、低温度系数、显微结构等方面取得进展。稀土永磁磁粉作为粘结磁体的原材料,其性能直接决定了粘结磁体的质量,研究在新型共半生稀土永磁磁粉、钐铁氮磁粉、各向异性磁粉、纳米双相复合磁粉等方面受到广泛关注。  相似文献   

12.
针对稀土永磁电机装配对Nd-Fe-B不饱和充磁的技术需求,分析了磁体的取向度、微观组织结构等对磁体充磁特性的影响。提高烧结Nd-Fe-B磁体的取向度,消除大尺寸晶粒、提高富稀土晶界相分布的均匀性可以有效提高磁体不饱和充磁状态下的磁通密度。通过调整粉末粒度分布、降低晶粒尺寸、改善富稀土相分布使磁体平均晶粒尺寸由4.43μm降低到2.70μm,磁体退磁曲线的方形度由95.3%提高到96.2%,磁瓦不饱和充磁后的磁通值可以达到饱和充磁的95%以上,满足电机装配充磁要求。  相似文献   

13.
用双合金工艺将主合金粉(简称MB)与富稀土辅合金粉(简称SB)按不同比例混合制备一系列烧结Nd-Fe-B磁体。对主合金鳞片铸锭均匀化处理后,制备的磁体晶粒尺寸变粗,矫顽力下降。与烧结态相比,所有磁体回火后矫顽力提高,微观组织分析表明,主要是主相晶粒边界光滑、平直,富Nd相连续均匀分布于主相晶粒周围。但辅合金SB含量不同,回火提高矫顽力的程度不同,比如MB的矫顽力从1971kA/m仅仅增加到2053kA/m;添加6wt%SB后,矫顽力则从1998kA/m大幅提高到2880kA/m。  相似文献   

14.
采用Ce﹑Pr和Nd少量混合稀土部分替代La,采用感应熔炼及高温退火工艺制备(La0.7Ce0.1PrxNd0.2-x)0.67Mg0.33Ni3.0(x=0,0.1,0.2)系列贮氢合金。结果表明,与La0.67Mg0.33Ni3.0合金相比较,混合稀土元素加入后对合金的相组成没有本质影响,(La0.7Ce0.1PrxNd0.2-x)0.67Mg0.33Ni3.0(x=0,0.1,0.2)合金微观组织由主相PuNi3型结构与LaMgNi4第二相组成;随混合稀土加入和Pr含量x的增加,PuNi3型相晶体结构的晶胞体积和a轴减小,但c轴及轴比c/a增大。电化学性能测试结果表明,用混合稀土Ce﹑Pr和Nd少量替代La后均能明显改善合金的综合电化学性能,合金的电化学容量与La0.67Mg0.33Ni3.0合金(392.0mAh/g)比较虽略有下降,但随Pr含量x的增加,混合稀土合金电极容量有所提高(384mAh/g);经100次循环后,混合稀土合金电极容量保持率从La0.67Mg0.33Ni3.0合金时的64%提高到82%~83%,其高倍率放电性能则从78.4%提高到了89%~91%。  相似文献   

15.
采用双合金法将两种粉末混合制备烧结永磁体可提高磁体磁性能;但在烧结过程中两种粉末之间存在元素扩散,元素扩散对磁性能的影响程度需要进一步研究。本文将Nd13Fe81B6和TbHx粉末混合制备烧结磁体,Nd13Fe81B6磁体矫顽力为4.5 kOe。当TbHx混合量为3 wt.%,烧结磁体的矫顽力增加至20.0 kOe。通过热激活研究认为,磁畴壁的形核是反磁化需要经过的过程。由于热力学的原因Tb元素更容易扩散进入Nd2Fe14B主相而不是富集在晶间富稀土相。Tb元素进入主相替代Nd可形成具有更高各向异性场的(Nd,Tb)-Fe-B表层,在反磁化过程中晶粒表层磁畴壁的形核场会增加,因此矫顽力增加程度显著。但是,TbHx混合量超过5 wt.%,矫顽力增加幅度降低。对于TbHx混合量7 wt.%的磁体,元素分布显示在主相晶粒内部贫Tb区域明显增少,证实在烧结过程中更多Tb原子从晶粒表层扩散入晶粒内部,这样晶粒表层反磁化形核场的提高程度会减弱,因而磁体矫顽力增加幅度降低。本研究说明要提高双合金Nd-Fe-B磁体磁性能需进一步控制元素扩散并优化磁体的元素分布。  相似文献   

16.
采用磁控溅射方法在烧结钕铁硼磁体表面沉积一层Tb镀层,然后进行晶界扩散热处理,制备出晶界扩散型(Tb,Nd) FeB磁体.通过扫描电子显微镜、电子探针分析仪和磁滞回线测量仪分析了晶界扩散前后磁体的微观结构与磁性能.结果 表明:与NdFe磁体相比,采用晶界扩散方法制备的(Tb,Nd) Fe磁体具有更宽的晶界相,且晶界相在主相晶粒周围连续分布,起到了去磁耦合作用.并且分布在主相晶粒表层的重稀土元素Tb形成了磁晶各向异性场更高的(Nd,Tb)2 Fe14B相.(Tb,Nd) FeB磁体的内禀矫顽力Hcj得到显著提升,其Hcj由NdFe磁体的15.98 kOe提高到23.78 kOe.  相似文献   

17.
非晶液相法生产烧结钕铁硼磁体的优越性   总被引:1,自引:0,他引:1  
探讨了使用非晶态液相和接近2:14:1成分的主相的双相合金工艺制造烧结钕铁硼稀土永磁材料的优越性。表明非晶液相法能有效减少钕铁硼磁体制造过程中的氧化,其他工艺相同时可获得比单相法更高的磁性能。暴露操作也可容易地制取N40商业档次的磁体。在一定的封闭保护条件下,很容易获得氧含量极低、性能达N45商业水平的磁体。  相似文献   

18.
本文采用两种不同碳含量的原料铁棒,按相同的传统烧结Nd-Fe-B永磁体的工艺,制得NdDyAlCuBFe块状永磁体,研究了碳对烧结Nd-Fe-B永磁体性能的影响.结果显示,原料铁棒中C含量增高,磁体的磁性能如剩磁、矫顽力、磁能积以及方形度都下降.SEM和金相显微观察表明:高C含量中的Nd2Fe14B主相的晶粒大小不均匀,小的为10μm,而大的达到100μm,且富Nd相分布也不均匀;而低C含量中的Nd2Fe14B主相的晶粒细小均匀,约为10~20μm,而且富Nd相分布均匀.造成上述差别的原因是:C是一种杂质元素,呈负电性,易与Nd发生反应,在晶界形成富C、富Nd的第二相杂质,破坏Nd2Fe14B主相,从而使磁体的各项磁性能指标都下降.  相似文献   

19.
以Nd2Fe14B为基础的稀土永磁体具有大磁化强度、高居里温度和高磁各向异性.尽管进行了大量研究,但没有找到磁性超过Nd2Fe14B的新型永磁材料.目前,大量的注意力集中在有可能超过Nd2Fe14B烧结磁体的交换耦合纳米晶复合磁体,这种磁体是由纳米尺度的软磁和硬磁化合物晶粒组成的.在Nd-Fe-B系统中,t-Fop、Fop和肝Fe为软磁相,Nd2Fe14B为硬磁相.纳米品复合磁体具有由软磁相造成的大过饱和磁化强度和硬磁相产生的高桥涵磁力,因此,这种材料的进性依赖于复合相的种类和技量.同时,深加少量的元素(AISt,y,CrGa,An,蛇等)…  相似文献   

20.
用双合金工艺在(Nd0.75Dy0.10Tb0.15)12.69Fe79.01Co2.00Nb0.30B6.00近正分主合金粉中掭加质量分数为3%的富稀土辅合金(Nd0.75Dy0.10Tb0.15)25.00Fe21.50Co<21.50>Nb4.00Ga8.00Ti5.00Al8.00B7.00粉和3%的Dy2O3粉,成功制备出超高矫顽力和高热稳定性的烧结Nd-Fe-B磁体,内禀矫顽力Hci和最大磁能积(BH)max分别为3028 kA/m和254 kJ/m3,22-220℃剩磁和矫顽力的温度系数分别为-0.104%/℃和-0.356%/℃,260℃不可逆磁通损失Lhirr的绝对值仅为4%.微观组织分析表明:主相Nd2Fe14B晶粒边界光滑、平直,富Nd相连续均匀分布于主相晶粒周围;在Nd2Fe14B晶粒表层附近富含Dy,Dy2O3中的Dy通过扩散与富Nd相及Nd2Fe14B晶粒表层中的Nd发生置换,从而在界面附近增强了磁各向异性.在此基础上,进一步提出了制备高矫顽力烧结Nd-Fe-B磁体中Dy的理想分布示意图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号