首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究沿空掘巷工作面在不同开采时期沿空侧采空区煤自燃危险区域,以营盘壕煤矿2202工作面和沿空侧2201采空区为例,采用煤自然发火实验分析2201采空区遗煤自燃极限参数,提出沿空侧采空区煤自燃危险区域判别条件,通过保护煤柱施工钻孔监测沿空侧2201采空区内气体体积分数和温度,利用Fluent数值模拟研究沿空侧2201采空区氧气体积分数分布规律,划分出沿空侧采空区煤自燃危险区域。结果表明:2202工作面回采期间,保护煤柱应力集中导致煤体破碎,沿空侧采空区氧气体积分数在10.1%~13.8%范围;工作面停采前沿空侧采空区氧气体积分数在10.3%~15%之间,回采期间,沿空侧采空区煤自燃危险区域为2202工作面前部45 m至后部119 m宽55 m靠近煤柱侧的狭长区域;停采前,沿空侧采空区煤自燃危险区域为2202工作面前部63 m至后部107 m宽42 m靠近煤柱侧的狭长区域。  相似文献   

2.
《煤矿安全》2020,(2):188-191
为研究"两进一回"通风工作面采空区煤自燃区域分布规律,模拟分析了塔山煤矿8301工作面回采期间不同工况下采空区氧气浓度,确定了煤自燃危险区域并提出相应防灭火措施。结果表明:"两进一回"通风工作面采空区煤自燃危险区域较大,自燃带在回采长度为150 m时达到96 m;注氮可大幅度改变采空区内自燃"三带"分布,减小采空区煤自燃危险区域。针对"两进一回"通风工作面,应考虑在采空区两侧注氮;增加风量可使自燃带边界向采空区深部延伸,且加大其前端距工作面的距离。  相似文献   

3.
基于矿井综放面采空区自燃"三带"实测数据,利用FLUENT软件对采空区流场的分布进行了数值模拟研究,得出:不同风量下工作面采空区漏风流场的形态,即不同供风条件下工作面采空区自燃"三带"的区域分布;在氧气浓度为7%~15%时,工作面的最大氧化带宽度为28.00m;综放面的连续推进速度小于1.75 m/d(工作面月推进量小于52.5 m)时,工作面采空区将有发生自燃发火的危险。所得结果对预防采空区自燃,促进煤矿安全生产具有指导意义。  相似文献   

4.
小回沟矿2201首采工作面为近距离煤层群开采工作面,“下三带”破坏范围和深度情况会影响2201工作面回采期间瓦斯涌出。为解决此问题,采用相似材料模拟和数值模拟以及现场工业试验,确定了2201工作面底板垂深0~9.5 m为采动破坏区域,9.5~18.8 m为裂隙发育区域,大于18.8 m为完整良好区域。这为2201工作面瓦斯治理提供了依据。  相似文献   

5.
为使“两进一回”通风系统应用效果最佳,降低采空区遗煤自燃危险性,基于理论分析结合COMSOL数值模拟软件,依托魏家地煤矿北1103工作面工程背景,针对第2进风巷不同布设位置、两进风巷风量配比、进风侧封堵墙宽度及工作面推进距离进行了研究,分析了不同工况下采空区氧气体积分数及氧化带范围。结果表明:第2进风巷位置对采空区氧化带范围影响较大,当通防巷位于进风巷右侧0.618D(D为工作面倾向长度)位置时,最大氧化带宽度为23 m;通过改变两进风巷风量配比可减小氧气影响区域,改变采空区氧化带范围;进风巷一侧封堵墙的存在可一定程度抑制采空区漏风,但存在最佳封堵范围;随工作面推进,120 m后采空区氧化带范围整体趋于稳定。  相似文献   

6.
通过实际观测采空区浮煤状况、工作面推进速度和采空区进回风侧O2浓度的分布规律,根据"三带"划分方法及划分指标,对白羊岭煤矿15101综放工作面进行了"三带"划分,掌握了采空区煤自燃"三带"分布规律及危险区域。15101工作面散热带的分布范围在采空区距离工作面10~100 m,进风侧由于漏风强度较大,散热带宽度较宽。窒息带在距离工作面165 m以上的采空区深部;在工作面回风侧,窒息带的深度约为137 m。氧化升温带宽度在工作面进风侧最大,达到55 m左右。  相似文献   

7.
大倾角综放面采空区自燃“三带”分布规律研究   总被引:2,自引:0,他引:2  
何俊  牛帅  陈亮 《煤炭技术》2014,(9):54-56
为研究大倾角综放工作面采空区自燃"三带"分布规律,首先建立了采空区流场的数学物理模型,然后利用Fluent对采空区自燃"三带"分布进行了模拟,并分析了不同风量对采空区自燃"三带"范围的影响。结果表明:采空区自燃"三带"具有三维空间分布特性;进、回风侧氧气浓度下降趋势不同,且进风侧自燃危险区域靠近采空区中后部,回风侧自燃危险区域紧靠工作面上隅角;单一改变风量大小对氧化带宽度的变化影响较小。  相似文献   

8.
通过在采空区预埋束管取样器,检测采空区内气体成分随工作面回采进度的变化情况,并对采空区O2浓度随深度的变化规律进行分析。根据实测O2浓度确定出安家岭一号井4106工作面采空区遗煤自燃氧化"三带"的分布状况;在实测数据的校准和验证下,利用数值模拟技术研究了采空区O2浓度在整个采空区的分布规律;采用验证过的数值模拟模型研究了工作面配风量变化对采空区自燃"三带"分布规律的影响。研究表明:大型综放工作面采空区内部高O2浓度区域具有在进、回风巷侧分布范围较广、在采空区中部区域分布狭窄的U形特征;配风量增加,采空区自燃带宽度增大,且回风侧增大幅度最明显。  相似文献   

9.
为提高急倾斜煤层伪斜开采条件下瓦斯与煤自燃综合防治效果,基于煤自燃"三带"划分标准和瓦斯爆炸三角形,建立采空区自燃"三带"分布的数学模型,利用COMSOL Multiphysics5.2模拟软件,对东林煤矿3409工作面采空区孔隙率、气体浓度、温度等参数进行模拟分析。结果表明:采空区上部孔隙率较大,下部除回风巷道边缘处较大外,其他区域孔隙率相对较低;氧气浓度结合漏风速度共同划分氧化带范围为:在进风侧氧化带宽23.2 m,在回风侧宽37.6 m,高温区域主要集中在回风侧、采空区的下部距离工作面较近区域;采空区上部瓦斯浓度相对较低,下部瓦斯浓度相对较高;瓦斯爆炸危险区域为中间工作面支架处区域范围为爆炸危险区域。  相似文献   

10.
为防治采空区自燃火灾发生,采用测定采空区温度和氧气浓度相结合方式对2324工作面采空区煤炭自燃三带进行了现场实测,得到了2324工作面采空区自燃三带宽度范围,并确定了工作面最小极限推进度。结果表明,2324工作面采空区三带范围为散热带小于11.82 m;自燃带11.82~65.90 m;窒息带大于65.90m,工作面回采时最小极限推进度为43 m/月。  相似文献   

11.
针对东峡煤矿大倾角工作面采空区现场危险区域难确定的问题,在确定工作面及采空区参数的基础上,采用相似模拟试验方法,构建了采空区自燃"三带"模拟试验系统,得出了大倾角工作面采空区在不同风量、不同风向下O_2浓度的分布规律。结果显示:大倾角采空区自燃"三带"呈立体分布;随着工作面风量的增大,风流进入采空区的深度以及对采空区的影响高度增大;上、下行通风条件下自燃"三带"主要分布在下巷道侧。  相似文献   

12.
浅埋深煤层工作面在开采过程中受采动影响更易产生与地面连通的裂隙,从而导致采空区漏风供氧增加、遗煤自然发火隐患增大。为尝试解决这一问题,以李家塔煤矿2号煤层首采1201工作面为研究对象,现场实测了工作面通风参数、采空区内进、回风两侧氧气体积分数的变化规律;CFD仿真模拟了不同供风量下采空区内部自燃危险区域的分布特征;并在此基础上提出了氧化区惰化降温、漏风区域控风堵漏、覆盖遗煤阻隔煤氧化反应“三位一体”的采空区遗煤自燃综合防灭火技术措施。结果表明:1201工作面采空区自燃危险分布范围为:进风侧86~222m,回风侧54~156 m。  相似文献   

13.
针对塔山煤矿8204-2工作面上方地形复杂、只能在回采起点集中布置钻孔抽采瓦斯的特殊情况,利用数值模拟软件研究分析回采期间不同回采长度和不同注氮量下采空区氧气摩尔浓度分布情况,确定该特殊情况下采空区自燃"三带"和煤自燃危险区域。结果表明:远距离抽采瓦斯使煤自燃危险区域变大;随着回采长度的增长,自燃带逐渐变宽;当回采长度为50 m时,自燃带宽度增宽速率突然变大,进风侧自燃带变宽幅度与回采长度变长幅度比例比回采长度为30~50 m时高出180%,回风侧相应宽度则高出140%,遗煤自燃危险性变大;注氮可大幅度减小采空区煤自燃危险区域。  相似文献   

14.
张增辉 《煤矿安全》2023,(12):73-79
为分析不同自燃特性缓倾斜煤层工作面下行通风时采空区内具有自燃危险可能的区域的分布特征,建立了倾斜采空区的渗流模型,依据该模型利用CFD仿真得到了不同火源时(模拟采空区遗煤不同的自燃性强弱)下行通风采空区内氧气和温度场的分布特征;结合保德煤矿81309工作面现场观测的采空区不同区域的O2体积分数的数据对仿真结果进行验证。结果表明:随着设置的热源强度(采空区遗煤自燃倾向性)的提高,采空区火风压作用增强,下行通风时的采空区内进、回风侧氧化带宽度差值在逐渐减小。实测得出的进、回风侧及工作面中部对应的采空区内窒息带临界位置分别距工作面200、290、175 m,与火源功率65 W/m2时的仿真结果较为吻合,表明所建立的模型较为准确,可用于倾斜易自燃煤层工作面自燃分布的研究。  相似文献   

15.
王俊峰  周斌  安帮  唐一博 《煤炭学报》2018,43(Z1):178-184
运用采空区束管监测,得出采空区自燃危险区域指标气体分布情况及流场气体运移规律。在此基础上对工作面采空区气体流场进行三维稳态数学建模,确定了采空区氧体积分数分布及自燃危险区域范围,同时应用同位素测氡技术探测地表氡异常区域进行验证,形成井下监测-计算机模拟-地表验证“三位一体”的采空区自燃危险区域预测的理论体系。将此方法成功应用于黄白茨矿1293工作面采空区,结果表明在当前工作面通风和回采进度条件下,采空区氧气带呈不规则“O”型分布,采空区煤自燃危险区域(氧气体积分数10%~15%)呈“U”型分布在距离工作面进风巷100~450 m,回风巷70~250 m,中部距离工作面50~140 m处。研究成果为采空区煤自燃区域精准探测提供了借鉴。  相似文献   

16.
某矿1302综放工作面为孤岛工作面,分析了其特殊的自然发火规律:采空区周边发火率高,中部发火率低;本工作面采空区发火率低,相邻采空区发火率高;两道两线位置发火率高。通过测定工作面的压能分布,计算1302工作面与周边采空区的漏风量,显示1302工作面基本上实现了与邻近采空区的均压通风。测定1302工作面的三带分布范围,不自燃范围带为采空区后20 m,自燃带为采空区后20~55 m,窒息带为采空区后55 m。计算得出最小推进速度为16.7 m,以目前1302工作面推进度推算,采空区自然发火的可能性极低。  相似文献   

17.
为了研究影响采空区自燃"三带"分布因素的影响情况,以新疆乌苏四棵树煤矿A504工作面为研究对象,采用现场考察和数值模拟相结合的方法,考察了采空区自燃"三带",研究了氧气浓度、瓦斯浓度与到工作面距离的函数关系,自燃带宽度和位置与工作面风量和推进度的关系。结果表明,A504工作面采空区中氧气浓度、瓦斯浓度与到工作面的距离呈线性关系;工作面风量变化时,自燃带本身宽度变化不大,但风量减小时自燃带整体位置会向工作面靠近,风量增加时向采空区深部移动;随推进度的增加,自燃带整体会向采空区深部移动,自燃带起止位置、宽度与推进度均呈幂函数关系。  相似文献   

18.
《煤炭技术》2016,(3):168-170
采用FLUENT软件对2341(3)工作面采空区漏风进行数值模拟,找出采空区自燃"三带"分布的影响因素及规律。现场测定氧浓度,得出2341(3)工作面采空区自燃"三带"宽度:进风侧氧化带范围24.7~45.8 m,回风侧氧化带范围10.8~32 m。  相似文献   

19.
仲照海  尚文杰 《陕西煤炭》2023,(4):79-84+94
为研究不同配风量影响下110工法沿空留巷采空区煤自燃“三带”分布范围,通过采空区束管监测与Fluent数值模拟,确定双龙煤矿202综采工作面采空区的漏风范围和氧气浓度分布。分析结果表明,随着配风量的增加,运输顺槽和辅运顺槽侧的煤自燃风险区域宽度均增加,氧化带面积逐渐增大。202综采工作面的极限推进速度为2.83 m/d,且随着配风量的增大,工作面安全推进速度逐渐增大。实际工况下202综采工作面采空区自燃“三带”范围为散热带(运输顺槽<90 m,辅运顺槽<96 m)、氧化带(运输顺槽90~226 m,辅运顺槽96~202 m)、窒息带(运输顺槽> 226 m,辅运顺槽> 202 m)。研究成果对工作面采空区煤自燃的预防与防控具有一定的借鉴作用。  相似文献   

20.
针对安家岭三号井39107工作面采空区自然发火问题,采用了现场监测与数值模拟相结合的方式对其进行区域危险性判定。依据氧浓度法划分自燃"三带"标准,束管监测数据与数值模拟结果总体保持一致。综合判断39107工作面采空区自燃危险区域范围为:进风侧52~143 m,回风侧25~128 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号