首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出Bézier曲线的近似弧长参数化方法及相应的算法.给定一条Bézier曲线,利用曲线参数域的一个二次变换对曲线进行重新参数化,使得曲线的参数化更接近于弧长参数化.该算法的关键是所使用的变换保持曲线的正则性.实验证明,用文中方法进行重新参数化之后,曲线上点的分布得到了改善.  相似文献   

2.
研究了在曲线形状保持不变的条件下 ,有理 n次 Bézier曲线的权因子改变与曲线参数化的关系 .同时 ,给出了有理 n次 Bézier曲线上点的参数与权因子之间的对应关系 ,导出了有理 n次 Bézier曲线的 n- 1个形状不变因子 .得到了与权因子变换对参数化有同样影响的参数射影变换 ,两种变换都不改变曲线的形状和首末端点 ,仅仅改变了曲线上的点与定义域内点的对应关系 .  相似文献   

3.
Bernstein-Bézier类曲线和Bézier曲线的重新参数化方法   总被引:39,自引:0,他引:39  
在Bernstein函数类和B啨zier曲线类的基础上 ,研究了BBC曲线和附权BBC曲线的表示方法和有关性质 对BBC曲线和附权BBC曲线理论与B啨zier曲线的关系剖析表明 :附权BBC曲线不仅是B啨zier曲线的推广形式 ,同时该理论蕴涵着系统的B啨zier曲线的重新参数化方法 ,对该方法进行了较为详尽的探讨 结果表明 ,运用附权BBC曲线理论实现B啨zier曲线的重新参数化的方法具有通用性好和计算简单等优点 ,在很大程度上弥补了B啨zier曲线理论没有系统的重新参数化方法的不足  相似文献   

4.
2次有理Bézier曲线的最优参数化   总被引:1,自引:0,他引:1  
把Bézier曲线的最优参数化技术成功地推广到外形设计系统中更为常用的2次有理Bézier曲线场合.新方法能够事先对曲线进行重新参数化,而不需要在计算过程中对非均匀的参数速率采用动态的补偿算法.其关键是巧妙地化简需要求解的高次有理函数积分公式,使得M(o)bius参数变换公式并不是基于数值解法来得到近似解,而是简单明了地具有解析形式的精确解.M(o)bius变换能够保持有理Bézier曲线的控制顶点和形状不变,仅仅改变曲线的参数分布情况.优化后的参数速率保持C1连续.新参数速率关于单位速率的偏离量在L2范数下达到最小,即实现了最优参数化,所得到的参数最为接近弧长参数.新方法简单直接,数值实例验证了算法的正确与有效.  相似文献   

5.
只有圆弧、等轴双曲线、伯努利双纽线和帕斯卡蚶线等曲线是可弦长参数化曲线,一般形式的Bézier曲线不满足可弦长参数化条件.为了生成有理n次Bézier曲线的近似弦长参数化,提出一种基于数值优化的弦长参数优化算法.首先推导了有理2次、3次和4次Bézier曲线满足弦长参数化的条件;然后对一般形式的有理n次Bézier曲线作M?bius变换,根据可弦长参数化条件推导出曲线与标准弦长参数化的偏差公式;最后通过优化方法计算曲线的最优参数表示.多个数值实例结果表明,该算法是有效的.  相似文献   

6.
为了更加方便清晰地应用复形式的有理deCasteljau算法和细分算法,通过研究一次复有理Bézier曲线的最优参数化问题,提出2种最优参数化方法——代数方法和几何方法.代数方法借助直接的代数运算推导曲线在Mbius变换下的重新参数化,使得这种参数化在L2范数下最接近于弧长参数化;而几何方法从一次复有理Bézier曲线的内在几何性质出发,直接求得曲线在Mbius变换下的最优参数化,进而揭示曲线最优参数化的本质.另外,从应用角度给出了用一次复有理Bézier曲线插值3个给定点的公式.实验结果表明,在最优参数化后,曲线上的等参数点分布更加均匀,因而拥有更强的实用性.  相似文献   

7.
针对CAD造型系统中有理Bézier曲线数值运算的鲁棒性问题,首先提出了中心投影变换和平行投影变换下的2种圆域有理Bézier曲线,给出了它们的端点插值、仿射不变性等性质,并通过实例比较了它们的误差半径的异同;其次讨论了这2种圆域有理Bézier曲线的退化条件,给出了平行投影变换下的圆域有理Bézier曲线降阶实例.结...  相似文献   

8.
本文采用一种重新参数化方法,计算比Mobius变换简单,通用性强。对这种重新参数化方法研究表明,该方法含有单一自由度,重新参数化一条多项式曲线,得到同一条曲线的不同参数化,可以从中找出最接近弧长的参数化,即最优参数化。采用这种重新参数化方法求出的曲线最优参数化与采用Mobius变换求出的最优参数化是一样的。实例表明了该方法的有效性。  相似文献   

9.
有理Bézier曲线是几何造型中被广泛应用的曲线拟合工具,而判断与计算有理B亡zier曲线的自交点在CAGD中有重要意义.通过定义控制多边形的适定性,借助有理Bézier曲线的升阶与toric退化,提出并证明有理Bézier曲线对任意正的权都没有自交点的充要条件是其控制多边形适定.  相似文献   

10.
有理Bézier曲线的降阶   总被引:6,自引:0,他引:6  
康宝生  石茂  张景峤 《软件学报》2004,15(10):1522-1527
从最优化思想出发,把有理Bézier曲线的降阶问题转化为求解优化问题,这样使得权因子和控制顶点能被分开考虑,从而保证了权因子的非负性.同时,结合智能计算中的仿生学方法和程序设计方法,给出有理Bézier曲线降阶的一种新方法.该方法首先计算简单,应用适应值函数和简单的循环执行复制、交叉、变异、选择求出最优值或次优值,其次实现了有理Bézier曲线的保端点插值的多次降阶,降阶后的有理Bézier曲线直接以显式给出.  相似文献   

11.
通过构造赋权矩阵,提出二次赋权有理Bézier曲线的概念,扩展了有理Bézier曲线的参数取值范围,获得造型更加灵活的实用曲线,得到比二次有理Bézier曲线更优的结果。  相似文献   

12.
13.
提出 Bézier 曲线的近似弧长参数化方法及相应的算法.给定一条 Bézier 曲线,利用曲线参数域的一个二次变换对曲线进行重新参数化,使得曲线的参数化更接近于弧长参数化.该算法的关键是所使用的变换保持曲线的正则性.实验证明,用文中方法进行重新参数化之后,曲线上点的分布得到了改善.  相似文献   

14.
根据函数的几何性质,对函数进行适当分段。定义了函数的分段三角形凸包,提出了一种控制顶点和权因子的确定方案。详细地讨论了函数的分段有理三次Bézier插值算法,定义了一种便于计算的新型误差。插值函数保持了原始函数的重要几何性质,如单调性、凹凸性、G1连续性。最后以数值实验结果表明了算法的有效性和可行性,该算法提供了函数近似表示的一条有效途径。  相似文献   

15.
为构造封闭的曲线为有理Bézier曲面的边界渐近线,给出封闭四边曲线为渐近四边形的条件,并提出插值该四边形的曲面构造方法.首先在给定角点数据的前提下构造优化的n次有理Bézier渐近四边形;然后利用该四边形和曲面在四边形上的切矢确定曲面沿边界的两排控制顶点和权;最后极小化曲面薄板能量函数确定剩余自由的控制顶点,进而构造出光滑的双5n–7次有理Bézier插值曲面.实例展示边界曲线为有理3,4,5次时曲面的构造结果,以及边界曲线含有直线或者拐点的情况,表明该方法是可行的.  相似文献   

16.
李宁 《计算机工程与应用》2012,48(21):160-162,173
有理Bézier曲线二阶导矢界的估计在CAGD中有重要的应用。把有理Bézier曲线的分子和分母分别看成整体,按照求导法则,得到有理Bézier曲线二阶导矢的表达式。由于求导会降低Bernstein基函数的次数,鉴于获取更好的估计式的需要,对其进行必要的升阶,使Bernstein基函数的阶数一致。利用有关的不等式的结论得出有理Bézier曲线二阶导矢界的估计式。  相似文献   

17.
为压缩几何信息的数据量,将区间曲线分解成中心曲线和误差曲线的形式,从而得到能够包含2条相邻有理Bézier曲线的区间近似合并曲线.该算法利用摄动误差最小化,通过求解一个线性方程组得到作为中心曲线的近似合并曲线;再利用中间结果直接得到区间宽度相等的误差曲线,或者通过二次规划得到逼近效果更佳但是等区间宽度不等的误差曲线;如果令端点处的区间宽度为0,还能得到端点插值的区间近似合并曲线;最后通过实例验证了文中算法的有效性.  相似文献   

18.
19.
通过对Bernstein基函数实施正弦变换,给出了Bézier曲线的一类重新参数化方法.基于Bernstein基函数,导出了正弦-Bemstein-Bézier类(Sine Bernstein-Bézier Class-SBBC)函数,定义了SBBC曲线,讨论了SBBC曲线和Bézier曲线的关系,提供了Bézier曲线重新参数化的一种有效方法.  相似文献   

20.
deCastaljau算法很早就用于Bézier曲线、曲面的细分.但对于有理Bézier曲线,当某些点出现大权时,固定t=1/2的均匀细分算法失效.本文分析了失效的原因并提出了一种新的非均匀细分方法.通过分析和比较,证明了新方法非常有效,可以很好地应用于实践.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号