首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
借助Gleeble-1500热模拟试验机对7050铝合金在不同应变速率、变形温度和压下率下进行镦粗试验,获得了在250、325℃、400、475℃变形温度下变形速率分别为0.01、0.1、1、10s-1的真应力-真应变曲线,进而分析了热塑性变形条件对该合金流变应力的影响。结果表明:变形温度越低、应变速率越高,流变应力越大,变形初始阶段流变应力随变形量增加而增大,达到极限值后进入近似稳态流变。与金相实验和光学显微镜观察试验方法相结合,研究了7050铝合金的高温热塑性变形条件下微观组织的演变规律;与压力加工原理相结合,分析了热塑性变形过程中变形参数和组织演变的关系。结果表明:通过改变变形温度、压下率和压下速率能有效改变动态再结晶组织体积分数和动态再结晶晶粒尺寸,压下率对该合金动态再结晶的影响较明显,不同温度下开始动态再结晶对应的变形量不同。  相似文献   

2.
在Gleeble-1500热/力机上进行了变形条件对2124铝合金超厚板流变行为与显微组织的影响规律的系列实验研究,得到了不同变形条件下2124铝合金超厚板高温压缩成形过程中的流变曲线。实验结果表明,2124铝合金在0.01s-1~1s-1范围内,高温压缩变形过程存在近稳态流变特征,近稳态流变应力随着应变速率的降低和变形温度的升高而降低。当应变速率为10s-1时,真应力-真应变曲线出现锯齿状,说明合金发生动态再结晶现象。利用OM和TEM分别研究了变形温度、应变速率、应变量对2124铝合金高温压缩变形显微组织的影响,在此基础上,分析并建立了2124铝合金热压缩变形发生动态再结晶的临界条件。  相似文献   

3.
7085铝合金的热变形组织演变及动态再结晶模型   总被引:2,自引:0,他引:2  
通过等温压缩实验,系统研究热变形参数(变形温度、应变速率及应变量)对7085铝合金热变形组织演变的影响。结果表明:升高变形温度以及降低应变速率,均有利于7085铝合金的动态再结晶发生,导致变形后的7085铝合金位错密度降低,再结晶晶粒尺寸增大;随着应变量的增加,变形后的合金位错密度降低,动态再结晶体积分数增大。采用线性回归方法建立包括峰值应变方程、临界应变方程、动态再结晶动力学方程以及动态再结晶晶粒尺寸方程的7085铝合金动态再结晶模型。  相似文献   

4.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

5.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为400℃,应变速率为0.01~10.0 s-1的等温压缩实验,获得热变形过程中的真应力-真应变曲线。结果表明:应变速率ε≥1.0 s-1时,实际变形温度高于预设温度,产生变形热效应。合金发生动态再结晶的临界应变随着应变速率的升高而增加,在较高应变速率条件下(ε≥1.0 s-1),流变应力曲线出现锯齿形波动,合金发生了不连续动态再结晶。利用光学显微镜和透射电镜分析了应变速率对3003铝合金热变形组织演变的影响。结果表明:应变速率越小,合金越容易发生动态再结晶,当应变速率为10.0 s-1时,由于变形热效应的作用,合金也发生了动态再结晶。低应变速率(ε≤0.1 s-1)条件下,提高应变速率可以明显细化晶粒,并且在相同应变下,动态再结晶体积分数随应变速率的增大而减小,综合考虑动态再结晶晶粒的大小和组织均匀性,较佳的应变速率为0.1 s-1。  相似文献   

6.
铸态AZ31B镁合金热压缩实验研究   总被引:2,自引:1,他引:1  
研究了铸态AZ31B镁合金在温度280~440℃和应变速率10-3~10-1s-1范围内的变形规律.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力.其真应力-真应变曲线表现出明显的动态再结晶特征.再结晶晶粒明显细化,晶粒尺寸随着温度或Z(Zener-Hollomon常数)值的下降而增大.在低应变速率下可以得到相对均匀的变形组织.  相似文献   

7.
为研究2A14铝合金的动态再结晶模型和热变形组织演变规律,在Gleeble-3500试验机上对2A14铝合金进行等温压缩,试验温度为573~773 K,应变速率为0.01~10 s~(-1),压下量为60%,变形后淬火保留高温组织。通过其流变应力曲线,建立临界应变和峰值应变的关系,并建立动态再结晶体积分数预测模型。通过对其组织晶粒演变分析,发现动态再结晶晶粒与变形温度和速率关系密切,会随着温度的增高,应变速率的降低而增大。  相似文献   

8.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

9.
在Gleeble-3500热模拟试验机上对圆柱体5083铝合金试样进行温度为300~500℃、应变速率为0.001~1 s~(-1)条件下的热压缩试验。对实验获得的真应力应变曲线进行摩擦修正,依据摩擦修正后的应力应变曲线计算本构方程,采用包含Zener-Hollomon参数的本构方程描述摩擦修正后的5083铝合金流变应力行为,其热变形激活能为164.17 kJ/mol。根据摩擦修正后的真应力-应变曲线绘制热加工图,随着真应变的增加,失稳区域向着高应变速率、高变形温度区域扩展,5083铝合金适宜热变形工艺参数:变形温度为400~500℃、变形速率为0.01~0.1s~(-1)与340~450℃、变形速率为0.001~0.01 s~(-1)。随着变形温度升高与应变速率降低,晶粒内位错密度减少,主要软化机制逐渐由动态回复转变为动态再结晶。  相似文献   

10.
为了研究挤压态ZK60镁合金的热变形行为,利用Gleebe-3500热模拟机在变形温度为523~723 K、应变速率为0.01~10 s~(-1)的条件下对挤压态ZK60合金进行了热压缩变形试验。通过真应力-真应变曲线分析了挤压态ZK60合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立了挤压态ZK60合金的流变应力本构方程,并观察了其在热压缩过程中的显微组织变化。结果表明:挤压态ZK60合金的真应力-真应变曲线属于动态再结晶型,并且合金的流变应力在高变形温度或低应变速率条件下较低。在变形温度降低或应变速率升高时,动态再结晶晶粒变小,但动态再结晶进行的不充分,再结晶晶粒分布不均匀。通过本构方程计算出挤压态ZK60镁合金的变形激活能Q=122.884 k J/mol,应力指数n=5.096。  相似文献   

11.
利用Gleeble-3500试验机对6061铝合金进行单道次等温恒应变速率压缩试验,研究合金在应变速率为0.001~1s~(-1),温度为350~500℃热变形条件下的动态再结晶行为。统计试验所得流变应力曲线峰值应力数据,确定合金热变形激活能Q为307.528kJ·mol~(-1),建立合金在不同热变形条件下的流变应力方程,动态再结晶峰值和临界应变模型;依据流变应力曲线特征,计算合金在不同变形条件下的动态再结晶体积分数,据此建立动态再结晶动力学模型。分析流变应力曲线可知铸态6061铝合金在350~500℃下变形,应变速率较低时(0.01s~(-1)),合金组织更容易发生动态再结晶,应力软化现象更明显。  相似文献   

12.
采用Gleeble-3800热模拟机,沿与原材料轴线呈0°、45°、90°方向切割试样,在320、400和480℃,变形速率0.01、0.1和1/s时对7075铝合金进行试验。研究了温度、应变速率对7075铝合金热变形过程中力学性能及显微组织的影响。结果表明:在同一应变速率下,7075铝合金的流变应力和进入稳态流动时所需的应变随温度的升高而降低;在低温成形时,晶粒的形状连续而均匀;随着变形温度升高,晶粒逐渐变得粗大;在较高温度变形时,大晶粒周围有细小的等轴晶出现,发生了动态再结晶。在同一变形温度下,7075铝合金的流变应力随应变速率的增大而提高;应变速率越大,越易出现动态再结晶。  相似文献   

13.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

14.
采用单轴热压缩实验,研究了热等静压态镍基粉末高温合金FGH98的热加工变形行为。观察了形变过程中的合金组织演变,分析了显微组织不稳定性对热塑性的影响。热压缩实验在等温、恒应变速率下进行,真应变分别为0.2、0.4和0.6,温度分别为1060、1105、1138和1165℃,应变速率分别为0.01、0.1、1和10 s-1。结果表明,随着真应变的增加,合金的真应力-真应变曲线上出现硬化-软化-稳态流变阶段。在低于g′相完全溶解温度、合金处在稳态流变或高应变条件下时,发生应变诱发动态再结晶并形成特殊形态的g+g′显微双相晶粒组织。晶粒尺寸细小,达到1.2~6.8μm,合金显示良好的热塑性。分析了变形过程中晶粒尺寸和流变应力的变化和g+g′显微双相晶粒组织形成机理,并对热加工过程中显微组织调控的可能性进行讨论。  相似文献   

15.
利用Gleeble-1500D热模拟机在250~450℃、应变速率0.002~2 s~(-1)、变形量为50%的条件下对Mg-5.1Sn-1.5Y-0.4Zr合金进行高温压缩模拟试验。根据应力-应变曲线分析了该合金流变应力变化特点,建立了流变应力本构方程和动态再结晶晶粒尺寸模型。结果表明:该合金在高温压缩变形时,随应变速率的增大和变形温度的降低,峰值应力不断增大而动态再结晶晶粒尺寸不断减小。  相似文献   

16.
采用Gleeble-3800热模拟试验机研究了N08811耐热合金在变形温度为900~1150℃、变形速率为0.1~5 s-1条件下的高温变形行为。结果表明,N08811合金的流变应力随着应变速率的增大及变形温度的下降而增加,是一种正应变速率敏感材料。通过对显微组织的研究,发现当应变速率为1 s-1时,N08811合金优先在变形晶粒的晶界处发生动态再结晶,再结晶晶粒数目及尺寸均随变形温度的升高而增加,至变形温度为1150℃时已发生完全再结晶。当变形温度一定时,高应变速率会降低N08811合金的再结晶温度,增加晶粒尺寸。依据真应力-真应变曲线,采用双曲正弦本构模型建立了N08811合金的流变应力本构方程,得到其热变形激活能为509.998 kJ·mol-1。  相似文献   

17.
本实验研究了热压缩过程中应变速率和形变量等形变参数对TLM钛合金流变应力行为、微观组织和织构演变规律的影响。实验结果表明:在较高应变速率(≥0.1 s-1)热压缩应力应变曲线出现流动软化;在0.1 s-1应变速率下应力应变曲线呈现明显的振荡;在较低应变速率0.001 s-1应力应变曲线呈现稳态流动。在低应变速率(0.1 s-1)和大变形量(10%)条件下,合金不易发生动态再结晶;随着形变量的增大,再结晶晶粒的尺寸逐渐减小。较高的应变速率有利于形成{111}112织构。  相似文献   

18.
利用等温热压缩实验建立了7055铝合金的流变应力、位错密度、形核率以及晶粒长大模型,并基于元胞自动机(CA)法模拟研究了7055铝合金在变形温度300~450℃,应变速率0.01~10 s~(-1),真实应变0.7条件下的微观组织演变。结果显示,高温、高应变速率有利于动态再结晶的形核;而高温、低应变速率有利于动态再结晶的充分进行,并能降低微观组织的平均晶粒尺寸,提升材料的组织均匀性。通过CA法模拟获得的流变应力曲线与实验值吻合较好。  相似文献   

19.
针对2D70铝合金进行等温恒应变速率压缩试验,分析合金在应变速率为0.001~1s~(-1),温度为350~530℃下变形的流变应力曲线和显微组织演变。基于此,建立2D70铝合金在该变形条件下的流变应力方程和位错密度模型,并利用DEFORM-3D有限元软件对合金进行微观组织模拟。结果表明,2D70铝合金在350℃下变形时,由于内部组织发生动态再结晶,使得在较低应变速率下(0.001s~(-1))变形的组织晶粒更细小;当变形温度达到470℃时,α-Al_2CuMg相大量回溶基体,呈现出α-Al相晶粒,其尺寸随着应变速率的提高而减小,同时在较低应变速率(0.001s~(-1))下变形,α-Al相晶粒将变得粗大。模拟对比可知模拟组织较好地反映金相组织演变趋势。  相似文献   

20.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5. 32×10~(-4)~2. 08×10~(-2)s~(-1)条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5. 32×10~(-4)~3. 33×10~(-3)s~(-1))条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8. 31×10~(-3)s~(-1)~2. 08×10~(-2)s~(-1))条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5. 32×10~(-4)s~(-1)时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号