首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的研究Mg_3Sb_2含量对Al-Mg_3Sb_2复相涂层的组织、硬度和摩擦学性能的影响,对比分析AZ31B镁合金基体、纯Al涂层和添加不同含量的Mg_3Sb_2之后涂层性能的差异。方法通过火焰喷涂技术在AZ31B镁合金表面制备了Al-Mg_3Sb_2复相涂层。利用扫描电镜(SEM)观察了涂层的截面形貌,利用X射线衍射仪(XRD)分析了涂层的物相组成。通过显微硬度计测试了AZ31B和涂层的硬度,通过摩擦磨损试验仪测试了AZ31B和涂层的摩擦学性能,并通过超景深三维显微镜测试了试样的磨痕宽度、深度及磨损体积。结果经火焰喷涂后可得到组织致密的复相涂层,涂层中的物相主要为Mg_3Sb_2和Al。涂层的平均硬度随Mg_3Sb_2含量的增加而增加,最高可达334.2HV0.025,是AZ31B的4.14倍。摩擦磨损试验中,涂层的摩擦系数随着Mg_3Sb_2含量的增加而减小,但都大于AZ31B的摩擦系数;涂层的磨损率随着Mg_3Sb_2含量的增加而减小,60%Mg_3Sb_2和80%Mg_3Sb_2涂层的磨损率小于AZ31B的磨损率,其他涂层的磨损率大于AZ31B的磨损率,80%Mg_3Sb_2涂层的耐磨性最好,比AZ31B下降了63.26%。随着Mg_3Sb_2含量的增加,Al-Mg_3Sb_2复相涂层的磨痕表面犁沟逐渐变浅并消失。结论 Mg_3Sb_2的加入可以提高涂层的硬度,随着其含量的增加,涂层的耐磨性逐渐提高。  相似文献   

2.
采用热喷涂技术,在AZ31B表面制备Al-80Mg_3Sb_2复相涂层。采用XRD、SEM、电化学工作站和电化学腐蚀磨损试验仪对涂层进行物相、微观组织、极化曲线和腐蚀磨损性能的测试。结果表明,涂层主要物相为Mg_3Sb_2和Al,组织均匀,自腐蚀电位为-0.98V,自腐蚀电流密度为0.048×10~(-3 )A/cm~2;磨损腐蚀时,AZ31B的开路电位始终为一条直线;而涂层开路电位则是加载后下降,卸载后上升;在往复磨损的一个周期内(约0.008s),AZ31B和涂层的开路电位都呈微"W"形;涂层的平均摩擦因数(0.10)小于AZ31B的(0.14)。  相似文献   

3.
目的研究Mg_3Sb_2含量对Al-Mg_3Sb_2复相涂层组织、耐蚀性和硬度的影响,对比纯Al涂层和添加不同含量Mg_3Sb_2涂层性能的差异。方法采用氧乙炔火焰喷涂技术和自制的Mg_3Sb_2粉末,在AZ31B镁合金表面制备不同成分的Al-Mg_3Sb_2复相涂层。采用扫描电镜(SEM)观察了涂层的微观组织,利用X射线衍射仪(XRD)分析了球磨粉末和涂层的物相组成,通过电化学工作站(CHI660e)对试样在3.5%Na Cl溶液中进行电化学腐蚀性能测试,并用显微硬度计测试了涂层的硬度。结果经火焰喷涂之后,获得了不同成分的Al-Mg_3Sb_2复相涂层,涂层中的物相主要为Al和Mg_3Sb_2。当Mg_3Sb_2的质量分数为40%和60%时,涂层组织致密,气孔、裂纹等组织缺陷较少。Tafel极化曲线测试中,随着第二相Mg_3Sb_2质量分数的增加,涂层的腐蚀电位逐渐正移。当质量分数达到80%时,其腐蚀电位为-0.9819 V,比纯Al涂层正移417.3 m V,腐蚀电流密度为0.048×10-3 A/cm2,约是纯Al涂层的1/2。显微硬度结果显示随着Mg_3Sb_2含量的增加,涂层的硬度逐渐提高,当质量分数达到80%时,涂层的平均硬度达到334.2HV,是纯Al涂层的6.79倍。结论Mg_3Sb_2的加入可以获得组织较好的涂层,随着其含量的增加,涂层的耐蚀性和显微硬度逐渐提高。  相似文献   

4.
通过热喷涂在AZ31B表面制备了Al-Mg_3Sb_2复相涂层,分析了摩擦频率对涂层在干湿两种环境下摩擦性能的影响。采用SEM、XRD分析涂层形貌和物相;通过腐蚀磨损试验仪测试涂层的开路电位和摩擦因数;并用超景深三维显微镜测试涂层磨痕的截面轮廓和磨损体积。结果表明,在3.5%的NaCl溶液中,涂层的开路电位随摩擦频率的增大而降低。涂层在两种环境下的摩擦因数均随频率的增大而减小,而磨损率却随频率的增大而增大;涂层在3.5%的NaCl溶液中的摩擦因数和磨损率均小于干摩擦条件下的。涂层在干摩擦条件下的磨痕随频率的增大,剥落现象越来越明显;在3.5%的NaCl溶液中,涂层磨痕表面较光滑,随频率的增大,出现少量的剥落坑。  相似文献   

5.
采用原位反应法制备不同体积分数的Mg_3Sb_2/Mg、(Mg_3Sb_2+AlSb)/Mg复合材料。使用XRD、SEM分析了复合材料的物相和形貌;利用显微硬度计和CTM万能试验机测试了其硬度以及力学性能;使用电化学工作站测试了复合材料在3.5%的NaCl溶液中的电化学腐蚀性能。结果表明,原位反应可制备出不同体积分数的Mg_3Sb_2/Mg、(Mg_3Sb_2+AlSb)/Mg复合材料;Mg_3Sb_2/Mg复合材料中添加Al,其硬度、屈服强度和抗拉强度均显著提高;Mg-15.4Sb-5Al复合材料的腐蚀电位为-1.38V,耐腐蚀性能最好,(Mg_3Sb_2+AlSb)/Mg复合材料的耐腐蚀性均优于Mg_3Sb_2/Mg复合材料。  相似文献   

6.
目的研究Al2O3含量对Al2O3-Ni复合涂层摩擦磨损性能的影响。方法采用大气等离子喷涂技术,在6082-T6铝合金基体表面分别制备Al2O3含量为30%、50%和70%的30%Al2O3-70%Ni、50%Al2O3-50%Ni、70%Al2O3-30%Ni复合涂层。对三种涂层的显微硬度和摩擦磨损性能进行对比研究,并分析原始粉末和涂层的相组成、涂层组织结构、磨损形貌和磨损机制。结果原始粉末中的部分α-Al2O3相在急冷条件下转变成γ-Al2O3新相,涂层中各衍射峰出现明显的宽化现象,有Al2O3非晶相生成。三种试样均由基体、打底层、涂层组成,基体与打底层之间有明显的分界面,打底层因与涂层化学成分相似使分界面不明显,层与层之间结合良好。涂层的显微硬度明显高于基体,约为基体硬度的4~5倍,且其随着Al2O3含量的增加而增加。在试验条件下,涂层的摩擦系数、磨痕宽度、磨损率均随着Al2O3含量的增加而减小,相较于30%Al2O3-70%Ni涂层,70%Al2O3-30%Ni涂层的摩擦系数降低了13%,磨损率降低了66.7%。30%Al2O3-70%Ni涂层磨损最严重,磨痕表面剥落明显,而50%Al2O3-50%Ni涂层与70%Al2O3-30%Ni涂层磨损后,磨痕表面产生大量即将剥落的"橘皮状"氧化物,磨损机制均为氧化磨损与粘着磨损的混合。结论 Al2O3-Ni复合涂层中增加Al2O3含量可以提高复合涂层的耐磨性。  相似文献   

7.
目的 提高65Mn钢的耐磨性和耐酸碱腐蚀性能。方法 通过真空熔覆技术在65Mn钢表面制备了Ni基-碳化钨(WC)复合涂层,并加入稀土氧化铈(CeO2)改善其微观缺陷。采用扫描电子显微镜(SEM)结合能谱仪(EDS)观察涂层微观结构和元素分布,X射线衍射仪(XRD)测定涂层物相成分,维氏显微硬度计测试涂层硬度。采用带有干涉镜头的摩擦磨损试验机测定涂层的摩擦因数,并通过三维形貌图获取磨痕宽度、深度和体积磨损量,通过磨痕扫描形貌分析摩擦磨损机理。采用电化学工作站分别测试涂层在酸性和碱性腐蚀介质中的电化学性能。结果 涂层以(Ni,Cr,Fe)固溶体、WC及含W增强相的Cr4Ni15W和Ni17W3作为主要的强化相组成。涂层随硬质相WC含量的增加而出现孔洞、裂纹等缺陷,在CeO2的改善作用下,质量分数为30%的WC硬质相涂层组织致密,无明显缺陷,平均显微硬度达900HV1~1 000HV1,是基体硬度的3~4倍;摩擦磨损性能较65Mn钢基体有明显提高,在不同试验条件下,其体积磨损率仅为65Mn钢基体的13.1%~17.4%,但摩擦因数略高于基体。磨痕分...  相似文献   

8.
研究了离子渗氮处理工业纯钛TA2与硬质材料对磨的磨损性能。采用球盘摩擦磨损试验机评价摩擦学性能,选取了3种硬度的对磨副材料Si O2、Al2O3、Zr O2。利用光学显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对渗氮前后TA2的微观组织结构和硬度进行表征,并分析磨痕的表面形貌及元素组成。结果表明,渗氮后TA2表面生成了80μm厚的Ti N、Ti2N和α-Ti(N)硬质相渗氮层,表面硬度由140 HV提高至1260 HV,耐磨性能得到了提高。未处理样品的磨损机制主要是严重的黏着磨损、塑性形变和一定程度的磨粒磨损;渗氮样品的磨损机制主要为磨粒磨损,磨损率随对磨副材料硬度的升高而增大。  相似文献   

9.
单磊  汪陇亮  孙润军  王永欣 《表面技术》2017,46(11):165-171
目的研究不同恒电位对TiAlN涂层在海水环境中磨蚀性能的影响,分析其腐蚀磨损行为。方法用PVD多弧离子镀技术在316不锈钢上沉积TiAlN涂层。通过XRD测试、硬度测试、结合力测试、电化学工作站测试、不同恒电位下磨蚀测试及磨痕截面轮廓测试,分别评价TiAlN涂层的相结构、表面硬度、结合力、电化学性能、摩擦系数和磨损率,通过扫描电子显微镜观察涂层磨痕形貌并分析其磨蚀损伤机理。结果 TiAlN涂层在海水环境下的抗腐蚀性优于基体316不锈钢。在阴极电位下,恒电位增加使涂层的摩擦系数逐渐降低。阳极电位为0.5 V时,摩擦形成的TiO_2基含水化合物颗粒可作为润滑剂,使涂层的摩擦系数迅速降低至0.45。TiAlN涂层在干摩擦条件下的磨损率为5.5678×10-5 mm3/(N·m),在阴极保护电位为-1 V下的磨损率为2.2909×10-6 mm3/(N·m),在开路电位(OCP)下的磨损率为7.4881×10-5 mm3/(N·m)。结论随着加载电位(SCE)的升高,涂层的腐蚀效应愈发明显。涂层在阴极电位下的磨蚀机理主要为塑性变形,在阳极电位下的磨蚀机理主要为疲劳点蚀。  相似文献   

10.
目的研究不同恒电位对TiN涂层在人工海水环境中腐蚀磨损行为的影响。方法用多弧离子镀系统在316不锈钢上沉积TiN涂层。通过XRD测试、纳米压痕硬度测试、膜基结合力测试、电化学工作站测试、不同恒电位下磨蚀实验和涂层的磨痕截面轮廓测试,分别评价TiN涂层的相结构、硬度、结合力、电化学性能、摩擦系数、磨损率,并通过扫描电子显微镜对涂层表面形貌、截面形貌和磨痕形貌进行分析。结果在摩擦条件下,TiN涂层的开路电位随着滑动摩擦时间的增加而逐渐降低。TiN涂层在不同恒电位(-1V、-0.5 V、OCP、0 V)下滑动摩擦,平均摩擦系数分别为0.392,0.416、0.324、0.348。磨损率分别为1.8117×10-6、3.1123×10-6、4.5958×10-6、7.7724×10-6 mm3/(N·m)。在0.5 V下,涂层被磨穿。TiN涂层在人工海水环境中的主要腐蚀磨损破坏机制为磨粒磨损和疲劳点蚀。结论提高加载电位,涂层的磨损量和磨损率同步增大。在-1、-0.5 V,OCP下,由腐蚀促进磨损的损失量占TiN涂层损失总量的比重逐渐增大,依次为0%、41.78%、61.77%。在0 V时,TiN涂层产生了由磨损促进腐蚀的损失量,占TiN涂层损失总量的比例为6.1%。  相似文献   

11.
目的 研究大气等离子喷涂Al2O3涂层在高硬配副下的摩擦磨损行为.方法 通过大气等离子喷涂(APS)制备了厚度约为380μm的Al2O3涂层,利用纳米压痕仪测量了Al2O3涂层和两种摩擦副的硬度和弹性模量.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对喷涂粉末、涂层以及磨痕的相结构和形貌进行了表征分析,通过X射线能量色散谱仪(EDS)分析了涂层磨痕中对偶元素的转移.另外,还通过CSM摩擦机系统地研究了该涂层的摩擦磨损行为.借助X射线光电子能谱仪(XPS)分析了磨痕中的化学组成.结果 制备的Al2O3涂层主要以γ-Al2O3相为主,且存在一定孔隙,并出现层状结构.在摩擦实验中发现,在同一摩擦副下,Al2O3涂层的摩擦系数随着载荷的增加而逐渐降低,磨损率随之增大.由于摩擦配副力学性能的差异,使Al2O3涂层表现出不同的摩擦磨损行为.以Si3N4为摩擦副时,Al2O3涂层的摩擦系数较小,但磨损率大,磨损机制主要是磨粒磨损和粘着磨损.在摩擦过程中,Si3N4对偶副会与空气中的水反应,生成少量具有润滑效果的Si(OH)4胶体.以WC为摩擦副时,Al2O3涂层的摩擦系数大,但磨损率低,磨损机制主要是粘着磨损和磨粒磨损,并伴有疲劳磨损.在摩擦过程中,由于产生了摩擦热,Al2O3涂层磨痕表面的γ-Al2O3相转变为 α-Al2O3相,摩擦配副的硬度和弹性模量越大,摩擦系数越高,γ-Al2O3相的转变也越多.结论 因高硬度的Si3N4和WC对偶球拥有不同的力学性能,对大气等离子喷涂制备的Al2O3涂层的摩擦磨损机理有显著的影响,并且在摩擦过程中,涂层磨痕内的γ-Al2O3相会向α-Al2O3相转变.  相似文献   

12.
等离子喷涂Al2O3-13%TiO2涂层的海水腐蚀磨损性能   总被引:1,自引:0,他引:1  
基于等离子喷涂技术构筑了高耐磨、耐蚀的Al2O313%TiO2涂层(AT13涂层),利用Rtec磨蚀试验机研究AT13涂层在干摩擦、去离子水和人工海水介质中的摩擦磨损性能,并利用电化学工作站分析了涂层在静态腐蚀和滑动磨损中的开路电位和极化曲线的变化,探讨了AT13涂层的腐蚀磨损机理。结果表明:热喷涂AT13涂层由αAl2O3、γAl2O3、金红石型TiO2和Al2TiO5相组成,其中富Ti相呈条带状分布于富Al基体中;AT13涂层在海水工况具有较好的润滑性,与干摩擦相比,其摩擦因数减小了0.15,且具有较好的稳定性;在3种工况下,AT13涂层都具有优异的耐磨损性能,海水润滑条件下,AT13涂层具有最小的磨损率,且随载荷的增加而减小;磨损过程加重了海水对涂层的腐蚀,但影响较小。  相似文献   

13.
研究了Al含量对Al-Mg_2Si复合涂层耐磨蚀性能的影响。采用电化学测试仪、腐蚀-磨损试验机观察Al含量为80%、60%、40%和20%的Al-Mg_2Si涂层的开路电位和摩擦因数,并采用扫描电镜(SEM)和超景深三维显微镜表征涂层磨痕特征。结果表明,Al-Mg_2Si涂层的电位较AZ31B镁合金基体正移,且Al含量越低电位正移越明显。Al含量为20%的Al-Mg_2Si涂层电位正移最多,正移了0.528 8V,腐蚀电流密度最小,为3.298×10~(-3 )mA/cm~2。Al加入量越少,涂层的磨损率和摩擦因数越小,当Al含量为20%时两者均达到最小值,分别为4.27×10~(-3 )mm~3/(N獉mm)和0.78。  相似文献   

14.
范春  龙威  周小平 《表面技术》2018,47(4):260-266
目的研究Al-Mg_2Si复合涂层在3.5%NaCl溶液中的腐蚀-磨损性能。方法用电化学工作站(CHI660E)、腐蚀-磨损试验机测试试样的电化学行为及实时监测在3.5%NaCl溶液中的开路电位、摩擦系数和干摩擦性能,并采用扫描电镜(SEM)、超景深三维显微镜对磨痕特征进行表征。结果镁合金自腐蚀电位为-1.4888V,腐蚀电流密度为2.817×10~(-3) A/cm~2。与镁合金基体相比,Al-Mg_2Si复合涂层的自腐蚀电位正移了0.5288V,腐蚀电流密度降低了3个数量级。腐蚀磨损过程中,Al-Mg_2Si复合涂层的开路电位(OCP)为-0.9202 V,比镁合金基体高0.5713 V。干摩擦过程中,复合涂层的稳定摩擦系数为0.28,比镁合金低0.07。复合涂层干、湿磨损率相差44.72×10~(-4) mm~3/(N?mm),其值是镁合金基体干、湿磨损率相差值的0.52倍,且均远远大于各自纯机械磨损率。结论在腐蚀磨损过程中,腐蚀是造成磨蚀损失的主要原因,且Al-Mg_2Si复合涂层的耐磨蚀性能优于镁合金基体。  相似文献   

15.
采用放电等离子烧结法在1000 ℃制备60NiTi合金,研究烧结压力对60NiTi合金的显微组织、显微硬度和摩擦学性能的影响规律;采用X射线衍射仪、扫描电镜分析60NiTi合金的显微组织,采用显微硬度仪评价60NiTi合金的显微硬度,通过摩擦磨损试验机研究60NiTi合金摩擦学性能,利用三维白光轮廓仪分析磨痕形貌并计算60NiTi合金的磨损体积,采用扫描电子显微镜分析磨痕表面形貌。试验结果表明:在25MPa烧结压力下,通过放电等离子烧结法制备的60NiTi合金显微组织均匀,主要为NiTi相和Ni3Ti相。随着烧结压力增加,60NiTi合金的显微硬度随之增加,且在50MPa烧结压力时合金的显微硬度达到最大值534 HV0.2kg。60NiTi合金的磨损率和磨痕深度随着烧结压力的增加而减小,60NiTi合金的磨损率和磨痕深度最小值分别为0.76×10-6 mm3/N?m、15 μm,其磨损机制为磨粒磨损与黏着磨损共同作用机制。  相似文献   

16.
目的研究Al-TiC涂层组织和性能的特性,以提高镁合金涂层的硬度和耐蚀性能。方法采用Nd:YAG固体激光器,在AZ91D镁合金表面通过激光熔覆制备Al-TiC涂层,采用光学显微镜、X射线衍射仪、显微硬度计、电化学工作站,对熔覆层的组织形貌、物相结构、显微硬度和耐蚀性能进行测定和分析。结果 Al-TiC涂层的主要组成相有AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,Al和TiC等。激光熔覆层的厚度约为0.35 mm,表面成型良好,结合层晶粒细小,熔覆层与镁合金基体之间结合良好,呈大波浪形。熔覆层试样的平均显微硬度为224HV,约为基体显微硬度(62HV)的4倍,由此表明熔覆层对镁合金硬度有明显的增强作用。镁合金基体的自腐蚀电位为-1.475 V,自腐蚀电流密度为7.556×10~(–5) A/cm~2,熔覆层试样的自腐蚀电位为-1.138V,自腐蚀电流密度为4.828×10~(–5) A/cm~2,与镁合金基体相比,熔覆层的腐蚀电位值增加,腐蚀电流密度值变小,熔覆层的耐蚀性能得到提高。结论采用激光熔覆技术,能够在AZ91D镁合金基体表面制备Al-TiC涂层,由于硬质相AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,TiC等的存在,熔覆层的显微硬度和耐蚀性能显著提高。  相似文献   

17.
使用X射线衍射仪(XRD)和扫描电镜(SEM)等研究了不同烧结温度对原位合成(Mg_3Sb_2+AlSb)/Mg复合材料的物相和形貌的影响;利用显微硬度计、CTM万能试验机和CS350电化学工作站等测试了复合材料的硬度、拉伸力学性能和耐腐蚀性能。结果表明:在不同烧结温度下,均可制备出(Mg_3Sb_2+AlSb)/Mg复合材料;复合材料的显微硬度和抗拉强度随着烧结温度的升高先增大后减小,烧结温度为750℃时,其显微硬度71 HV、抗拉强度108 MPa均达到最大值;烧结温度为700℃时,(Mg_3Sb_2+AlSb)/Mg复合材料的自腐蚀电位为-1.38 V,耐腐蚀性能最佳。  相似文献   

18.
采用超音速火焰喷涂(HVOF)制备了WC-WB-CoCr涂层,研究了温度对WC-WB-CoCr涂层高温摩擦磨损性能的影响。通过SEM、XRD和显微硬度仪对涂层的微观组织、相结构和力学性能进行表征。通过摩擦磨损试验机和拉曼光谱仪研究了WC-WB-CoCr涂层的高温摩擦学性能和氧化产物,采用台阶仪扫描磨痕形貌并计算WC-WB-CoCr涂层的磨损率。结果表明:WC-WB-Co-Cr涂层主要由WC和CoW2B2组成,涂层结构致密,与基体结合紧密;随着磨损试验温度升高,涂层的摩擦系数从0.66降低到0.57,涂层的磨损率随着温度的升高而升高,但是其磨损率增长程度随着温度的升高而降低。在高温磨损过程中,磨痕表面的氧化膜主要由WO3和CoWO4组成,且CoWO4比WO3表现出更好的耐高温磨损性能。涂层的主要磨损机制为氧化磨损、疲劳磨损和粘着磨损。  相似文献   

19.
以Al、Ti和Ni/C混合粉末为原料,在AZ91D镁合金表面激光熔覆制备Al_3Ti增强Al基复合涂层,并与基体和Al涂层进行对比。采用扫描电镜、X射线衍射仪对涂层的组织形貌和相组成进行分析,利用显微硬度计、电化学工作站对涂层硬度和耐腐蚀性进行测定。结果表明:Al涂层由Al_3Mg_2和Al_(12)Mg_(17)相组成,添加10%(Ti+Ni/C)涂层中还原位自生了增强相Al_3Ti。与基体相比,涂层的硬度显著提高,耐腐蚀性有了明显改善。而与Al涂层相比,添加10%(Ti+Ni/C)涂层的平均硬度提高了41%,自腐蚀电位增加了167 mV,自腐蚀电流密度略有下降,耐腐蚀性得到进一步提高。EIS测试结果显示,添加10%(Ti+Ni/C)涂层的Rc、Rct值均高于Al涂层和基体,证实了添加10%(Ti+Ni/C)涂层具有最好的耐腐蚀性。  相似文献   

20.
目的 在低碳钢表面高效制备沉淀硬化马氏体不锈钢涂层,研究涂层在腐蚀磨损苛刻条件下耦合损伤行为。方法 采用热丝激光熔覆技术在20钢基材表面制备17–4PH马氏体不锈钢涂层,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)等分析涂层的相组成和显微组织,采用电化学腐蚀摩擦磨损试验仪对涂层的摩擦磨损、极化曲线、电化学阻抗谱(EIS)及腐蚀磨损耦合行为进行研究。结果 制备的涂层组织均匀、致密,无裂纹、气孔等缺陷,主要由马氏体相组成。熔覆区的平均硬度约为310HV0.1,约是基材硬度的1.5倍,自腐蚀电流密度为6.583×10?8 A/cm2,具有优异的耐蚀性。在3.5%NaCl溶液中,随摩擦载荷的增加,涂层的开路电位下降,摩擦因数增大,自腐蚀电位下降,腐蚀电流密度增大,摩擦对腐蚀促进作用明显。结论 热材激光熔覆技术节能、高效,制备的17–4PH涂层结构致密、性能优异,可用于在腐蚀磨损苛刻环境下零部件的表面改性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号