首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用脉冲电镀技术在Q235钢表面沉积制备Ni-Sn-Mn合金镀层,通过正交试验方法对工艺参数进行了优化。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、X射线衍射仪(XRD)、Tafel曲线和EIS谱考察镀层元素含量、镀速、表面形貌、相结构及耐蚀性。结果表明:脉冲电镀Ni-Sn-Mn镀层最佳工艺参数为:镀液温度30℃,电流密度10 A·dm~(-2),施镀时间30 min,p H值4.0。最佳工艺条件下所得镀层为非晶态结构,表面球胞颗粒均匀致密,Ni、Sn、Mn的质量分数为68.59%、22.17%、9.24%。与Ni-Sn镀层相比,Ni-Sn-Mn镀层在3.5%Na Cl腐蚀液中的E_(corr)值(-0.346 V,vs Al/Ag Cl电极)更正,I_(corr)值(2.518×10~(-8)A·cm~(-2))更低,R_(ct)值(11 265Ω·cm~2)更大,耐蚀性更好。  相似文献   

2.
采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层。利用扫描电镜(SEM)、辉光放电光谱仪(GDS)、Tafel曲线和电化学阻抗谱(EIS)考察了施镀时间对镀层表面形貌、形成过程、镀层厚度、元素含量和耐蚀性的影响。结果表明:镀层由粒状结构形核、长大并逐层叠加形成;镀层的形成存在一个孕育期,孕育期后一定时间内镀层增厚较为困难,施镀时间继续增大,镀层可顺利增厚。随施镀时间的增大,镀层镍含量增大,铬含量减小,钼含量减小。在3.5%NaCl溶液中,镀层耐蚀性先增强后减弱。施镀时间为50 min时制备的镀层具有最大的自腐蚀电位(-0.355 V)、最小的腐蚀电流密度(0.006μA·cm~(-2))和最大的电荷转移电阻(26544Ω·cm~2),耐蚀性最好。  相似文献   

3.
采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、Tafel曲线和电化学阻抗谱(EIS)考察了p H值对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果表明:随着p H值的增大,镀层中镍含量先减小后增大,铬先增大后减小,钼含量减小;镀层沉积速率先增大后减小;在3.5%Na Cl溶液中,镀层耐蚀性先增强后减弱。p H值为3.5时,镀层均匀致密,具有最大的自腐蚀电位(-0.535V)、最小的腐蚀电流密度(0.123μA·cm~(-2))和最大的电荷转移电阻(2550Ω·cm~2),此时镀层耐蚀性最好。  相似文献   

4.
《铸造技术》2017,(1):84-87
采用脉冲电镀法在Q235钢表面制备了Ni-Cr-Mo合金镀层。利用辉光放电光谱仪、扫描电镜、Tafel曲线和电化学阻抗谱考察了尿素含量对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果表明,随尿素含量的增大,镀层镍含量先增大后缓慢减小,铬含量先增大后减小、钼含量先减小后增大;镀层沉积速率先增大后减小;镀层表面颗粒尺寸减小;镀层在3.5%NaCl溶液中耐蚀性先增强后减弱。尿素含量为60 g·L~(-1)时制备的镀层具有最大的自腐蚀电位(-0.535 V)、最小的腐蚀电流密度(0.123μA·cm~(-2))和最大的电荷转移电阻(2 550Ω·cm~2),耐蚀性最好。  相似文献   

5.
采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mn合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、Tafel曲线和电化学阻抗谱(EIS),考察了添加剂对镀层元素含量、沉积速率、镀层外观、表面形貌和耐蚀性的影响。结果表明:随添加剂含量的增大,镀层中镍含量降低,铬、锰含量增加;沉积速率先增大后减小;镀层外观光亮度先升高后降低;晶粒尺寸先减小后增大;在3.5%Na Cl溶液中,镀层耐蚀性先增强后减弱。添加剂含量为10 ml/L时,镀层致密均匀,具有最大的腐蚀电位(-0.363 V)、最小的腐蚀电流密度(8.829×10-8A·cm~(-2))和最大的电荷转移电阻(2737Ω·cm~2),耐蚀性最好。  相似文献   

6.
采用脉冲电镀法在Q235钢表面制备Zn-Ni-Mn合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、塔菲尔(Tafel)曲线和电化学阻抗谱(EIS)研究了施镀时间对合金镀层元素含量、沉积速率、表面形貌及耐蚀性的影响。结果表明:随施镀时间的延长,镀层中锌、镍含量降低,锰含量升高;镀层沉积速率增大;镀层耐蚀性先增强后减弱。施镀时间20 min所得镀层均匀致密,耐蚀性最佳。在最佳施镀时间20 min下所制备的Zn-Ni-Mn合金镀层与Zn-Ni合金镀层相比,其自腐蚀电位更正,自腐蚀电流密度更低,具有更加优异的耐蚀性。  相似文献   

7.
柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层的影响   总被引:1,自引:2,他引:1  
目的揭示柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层元素含量、沉积速率、表面形貌和耐蚀性的影响规律。方法采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层,利用辉光放电光谱仪、扫描电镜、Tafel曲线和电化学阻抗谱考察柠檬酸铵浓度对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果随柠檬酸铵浓度的增大,镀层镍含量减小,铬、钼含量增大,镀层沉积速率减小,镀层表面颗粒的尺寸减小,镀层在3.5%Na Cl溶液中的耐蚀性先增强后减弱。结论柠檬酸铵质量浓度为196 g/L时,镀层具有最大的自腐蚀电位(-0.537 V)、最小的腐蚀电流密度(0.313μA/cm~2)和最大的电荷转移电阻(2075?·cm~2),耐蚀性最好。  相似文献   

8.
采用直流、单脉冲和换向脉冲三种不同电沉积方式在Q235钢表面电镀制备Ni-Cr-Mn合金镀层。利用辉光放电光谱仪、形状测量激光显微系统、Tafel曲线和电化学阻抗谱,研究了电沉积方式对镀层元素含量、沉积速率、3D形貌和耐蚀性的影响。结果表明:按照直流、单脉冲和换向脉冲的顺序,镀层中镍含量减小,铬、锰含量增大,沉积速率先增大后减小,表面粗糙度降低,耐蚀性增强。直流方式制备的镀层表面存在个别较大的颗粒,单脉冲方式制备的镀层表面颗粒大小较为均匀,但仍存在个别较大颗粒,换向脉冲方式制备的镀层总体均匀致密。换向脉冲方式制备的镀层表面粗糙度最低,在3.5%NaCl溶液中,该镀层具有最大的腐蚀电位(-0.305 V)、最小的腐蚀电流密度(7.467×10~(-8)A·cm~(-2))和最大的电荷转移电阻(5972Ω·cm~2),耐蚀性最佳。  相似文献   

9.
温度对化学镀 Ni-P 合金层形貌、硬度及耐蚀性的影响   总被引:5,自引:5,他引:0  
金永中  杨奎  曾宪光  倪涛  丁松 《表面技术》2015,44(4):23-26,31
目的揭示在70~95℃施镀温度范围,Ni-P合金镀层显微形貌的变化规律,并探讨表面形貌结构、合金硬度及耐蚀性能的相关性。方法以施镀温度为变量,通过化学沉积的方法制备Ni-P合金镀层。对镀层表面形貌进行表征,测试镀层硬度,并采用盐酸为腐蚀介质进行浸泡,以相对腐蚀速率表征镀层的耐蚀性。结果在70~95℃的施镀温度范围内,随着温度升高,镀层形貌先趋于致密和平整,而后表面粗化,镀层的硬度和耐蚀性均呈现先提高、后降低的趋势。最佳镀层形貌和硬度值出现在85℃,耐蚀性最好的施镀温度区间为85~90℃。结论当镀液p H值为4.5±0.1,施镀时间为3 h时,施镀的最佳温度为85℃。此条件下制备的镀层表面平整且均匀致密,硬度高,耐蚀性能优异。  相似文献   

10.
在BAg45CuZn钎料表面进行化学镀锡,分析镀液温度、pH值、施镀时间对锡镀层的沉积速率和AgCuZnSn钎料中锡含量的影响规律,确定最佳工艺,并表征锡镀层的表面形貌和AgCuZnSn钎料的润湿性。分析表明:随着温度和pH值升高,镀层沉积速率和AgCuZnSn钎料锡含量均先升高,后降低;随着施镀时间的延长,沉积速率先增大,后快速减小,而AgCuZnSn钎料Sn含量逐渐增大。采用最佳工艺时,沉积速率达到13.6μm/h,锡镀层的表面平整、致密度高,所得钎料的Sn含量为2.45%,与基体BAg45CuZn钎料相比,其润湿性有大幅度提高,铺展性好。  相似文献   

11.
通过脉冲电镀技术在Q235钢基体上制备出Zn-Ni-Mn合金镀层。研究了电流密度对镀层表面形貌、成分、沉积速率及耐蚀性的影响。结果表明,随着电流密度的增大,沉积速率先增大再减小;镀层中锰含量升高,锌、镍含量降低。随电流密度增加,该镀层随耐蚀性先增强后减弱。电流密度为3.0 A·dm~(-2)时,所得Zn-Ni-Mn合金镀层平整致密,耐蚀性最好。Zn-Ni-Mn合金镀层在3.5%NaCl溶液中的耐蚀性比在5.0%NaOH溶液中更好。  相似文献   

12.
通过电沉积法在纯铜表面制备Ni-Mo-C合金镀层,采用能谱仪(EDS)、扫描电镜(SEM)、线性伏安扫描法(LSV)和电化学阻抗谱(EIS)等方法研究了镀液pH值对Ni-Mo-C合金镀层元素组成、沉积速率、表面形貌及析氢性能的影响。结果表明:随着镀液pH值的增大,镀层中Ni、C的含量先减小后增大,Mo的含量先增大后减小;当镀液pH=4.5时,电沉积速率最大;能量因素和几何因素的优化均可增强合金镀层的析氢性能,能量因素对析氢性能的促进作用大于几何因素;当镀液pH=4.5时,镀层中Mo含量最大,吸附氢的脱吸附能力最强,析氢性能最好。  相似文献   

13.
用电沉积方法在铜表面制备了Ni-ZrO2纳米复合镀层。研究了工艺参数对复合镀层的硬度、耐磨性、耐蚀性的影响。结果表明,镀层硬度随阴极电流密度、镀液温度的增大均呈现先增大后减小的趋势;而随镀液中纳米ZrO2的添加量增加,镀层的硬度逐渐增大;镀层的耐磨性随这几个工艺参数的增加先增加后减小;镀层的耐蚀性随着电流密度的升高先下降再升高,随着镀液中纳米ZrO2添加量、镀液温度的增加,镀层的耐蚀性先升高再下降。本工作中最佳的工艺参数为纳米ZrO2添加量8g/L,阴极电流密度3A/dm2,镀液温度50℃左右。  相似文献   

14.
目的解决连续碳纤维在镀覆过程中易出现黑心现象以及无法完全浸泡于镀液中的问题,制备镀层均匀的连续碳纤维镍镀层。方法引入外加电磁搅拌对连续碳纤维进行化学镀镍,研究了施镀时间、镀液温度、镀液pH值以及电磁搅拌转速对连续碳纤维表面微观形貌及镀层沉积速率的影响规律。结果当搅拌转速一定时,随着施镀时间、镀液温度、镀液pH值的不断增加,碳纤维表面镀层逐渐变得均匀完整,且镀层厚度逐渐增大。但当施镀时间超过20 min,镀液温度超过75℃,镀液pH值超过8时,镀层表面沉积了大量形状不一的胞状镍颗粒,形成粗糙的表面形貌。镀层的沉积速率随着镀液温度、镀液pH值的升高而增大。当搅拌转速由200 r/min增加到300 r/min时,镀层的沉积速率随着搅拌转速的增加而不断增大;当搅拌转速由300 r/min增加到400 r/min时,镀层的沉积速率随着搅拌转速的增加而不断减小。结论电磁搅拌辅助连续碳纤维化学镀镍的最佳施镀工艺参数为:施镀时间15~20 min,镀液温度75℃,镀液pH为8,搅拌转速200~250 r/min。采用此工艺参数能获得表面致密、均匀完整的镍镀层。  相似文献   

15.
采用脉冲电沉积制备出Ni-WC/Co纳米复合镀层,研究镀液中WC/Co含量对复合镀层晶体结构、晶粒尺寸和硬度的影响;室温下,通过测试复合镀层在3.5%(质量分数)NaCl溶液中的电化学行为,分析镀层的耐蚀性能。结果表明:随着镀液中WC/Co含量增加,复合镀层平均晶粒尺寸先减小后增大,硬度则是先增大后减小,复合镀层的耐蚀性能是先升高后降低。当WC/Co含量为30 g/L时,复合镀层的平均晶粒尺寸最小,硬度最高,腐蚀电位(E_(corr))较高,腐蚀电流密度(I_(corr))最低,耐蚀性能最佳。  相似文献   

16.
为了提高低碳钢在海洋环境中的耐蚀性,采用脉冲电沉积技术在Q235钢表面制备Ni-Sn-Mn合金镀层,通过正交试验方法对镀液组分进行优化。利用扫描电镜(SEM)及附带的能谱仪(EDS)、X射线衍射仪(XRD)、Tafel曲线和电化学阻抗谱(EIS)等方法对镀层表面形貌、元素含量、相结构及耐蚀性进行分析。结果表明:脉冲电沉积Ni-SnMn镀层最优镀液组分为:10 g/L SnCl_2·2H_2O、55 g/L NiSO_4·6H_2O、50 g/L MnSO_4·H_2O和160 g/L Na_3C_6H_5O_7·2H_2O。最优镀液组分条件下制备的镀层为非晶态结构,镀层表面胞状颗粒均匀致密。镀层中Ni、Sn、Mn的质量分数分别为68.59%、21.57%、9.84%。与Ni-Sn镀层相比,Ni-Sn-Mn镀层在3.5%NaCl溶液中的自腐蚀电位(-0.346 V)更正,自腐蚀电流密度(2.816×10~(-8) A/cm~2)更低,电荷转移电阻(12 580Ω·cm~2)更大,耐蚀性更好。  相似文献   

17.
采用脉冲电沉积技术从硫酸钴基电解液中制备纳米晶钴镀层,研究镀液组成和电沉积条件对电流效率以及镀层形貌、结构和硬度的影响,确定最佳沉积条件。研究发现,增大镀液中硫酸钴浓度和十二烷基硫酸钠(SDS)含量对镀层显微硬度的影响可忽略不计,而对电沉积电流效率的影响显著。在电沉积镀液中加入糖精,可使六方密堆结构(hcp)钴薄膜的晶粒尺寸减小,显微硬度提高,而对电流效率无显著影响。在含有SDS和糖精的镀液中获得的镀层表面更光滑,缺陷更少。结果表明,电流效率和显微硬度均随峰值电流密度和占空比的变化而变化,随着电流密度和占空比的增大,表面光滑的镀层变为针状,晶粒尺寸和择优取向也随之改变。  相似文献   

18.
采用电沉积法在纯铜基体上制备了银-石墨复合镀层,研究了镀液搅拌速率对银-石墨复合镀层耐蚀性和耐磨性的影响。结果表明:随着搅拌速率的增大,复合镀层中石墨的含量先增大后减小,自腐蚀电流密度和自腐蚀电位呈现先增大后减小的趋势,但整体变化幅度不大;搅拌速率为320~920r/min时,随着搅拌速率的增大,复合镀层摩擦因数增大,磨损率增大。考虑到工业生产要求,最佳搅拌速率为420r/min,此时制备的复合镀层的磨损率可低至8.13×10~(-14) m~3/(N·m)。  相似文献   

19.
利用X射线衍射分析和动电位扫描技术等测试手段,考察电沉积工艺条件对Pd-Co合金镀层微观相结构和耐蚀性的影响。结果表明:钯钴合金沉积层的晶粒尺寸D(111)随电流密度、pH值和沉积时间的增加呈先减小后增大的变化趋势,随着镀液温度的升高而不断增大;当电流密度为1.0A/dm^2,pH值为8.3,沉积时间为30min时,其晶粒尺寸最小,为8.2396nm;当电流密度为1.0A/dm^2,镀液温度为35℃,pH值为8.3时,钯钴合金沉积层的耐蚀性最强;而沉积时间对合金耐蚀性的影响不大。  相似文献   

20.
在铝合金表面化学镀Ni-W-P的热稳定性及镀层研究   总被引:2,自引:0,他引:2  
在1060-H12铝合金表面化学沉积得到Ni-W-P三元合金镀层,通过X射线衍射(XRD)、扫描电镜(SEM)等测试手段研究了镀层的组织、相变行为、镀速及其硬度。结果表明:当镀液的pH值在6~11范围内,镀速随pH值增加而增大,在pH值为9时镀速达到9.5μm/h,而后镀速减小;镀层已完全覆盖基体,表面由胞状颗粒组成,大小比较均匀,无明显的缺陷,镀层呈现非晶态;当pH值为8~9时,镀层与基体结合较为牢固,弯曲试验和锉刀试验显示无脱落和起皮现象;热处理温度为380℃,保温时间为2 h时,XRD曲线中有Ni3P衍射峰出现,镀层硬度HV达到峰值约为840,再随着热处理温度增加,其硬度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号