首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在实验室中采用无抑制剂法制备取向硅钢,利用XRD、TEM等方法研究了冷轧和初次再结晶阶段的微观组织与织构。结果表明,冷轧板织构主要由α织构和γ织构组成;初次再结晶退火后α织构减弱,γ面织构{111}112增加,初次再结晶退火70 s后出现Goss织构。EBSD分析显示Goss位向晶粒大多与{111}112位向晶粒相邻;随退火时间的增加,Goss和{111}112位向晶粒均有所增加。  相似文献   

2.
以含硅量为3%的取向硅钢为研究对象,通过DEFORM软件对初次再结晶过程进行模拟,研究了退火温度和退火时间与再结晶动力学和再结晶晶粒尺寸之间的关系。结合实验结果,得出初次再结晶的最佳退火工艺为820℃×5 min。  相似文献   

3.
以试验室模拟CSP工艺生产的Fe-3Si热轧钢带为研究对象,采用正交试验及方差分析的方法,研究了取向硅钢初次再结晶退火工艺对高温退火后获得锋锐的高斯织构的影响.结果表明:取向硅钢两段式初次再结晶脱碳退火工艺参数加热段保温时间及加热温度是高温退火后获得锋锐高斯织构的主要影响因素,其可信度分别在90%和85%以上;在本试验条件下,通过正交试验获得的最佳退火工艺为:冷硬板经600℃保温3 min和850℃保温6 min.  相似文献   

4.
通过研究脱碳退火保温时间对取向硅钢初次再结晶组织、织构及高温退火样品磁性能的影响,探讨了有利于Goss晶粒异常长大的初次再结晶环境。结果表明,在820℃进行脱碳退火,当保温时间从2 min增加到6 min时,初次再结晶织构中Goss晶粒相对于{111}112和{111}110晶粒的尺寸优势逐渐增加,{111}110含量逐渐升高,且1/8层中Goss相对于其他取向晶粒尺寸优势稳定,使取向硅钢二次再结晶晶粒尺寸逐渐增大、磁性能逐渐提高。  相似文献   

5.
对高磁感取向硅钢冷轧板分别进行800、950、1050和1120℃不脱碳的预退火处理,在800℃预退火,成品的磁性能较好.织构分析的结果表明,随着预退火温度升高,初次再结晶后有利织构组分{111} <112>与不利织构组分(118)[110]的比值f(111)/f(118)逐渐降低,初次再结晶织构的变化是成品磁性的影响因素之一.  相似文献   

6.
低温板坯加热法生产高磁感取向硅钢,其磁感低于传统高温高磁感取向硅钢的磁感值。为探究其原因,作为该研究的第一步,测定并对比分析了两种工艺下初次再结晶的晶粒尺寸和织构。结果表明,低温高磁感取向硅钢完成初次再结晶后,晶粒尺寸长大且不均匀,织构组分不够单一,高斯晶核及有利织构{110}001、{111}112、{111}110组分比例低于高温高磁感取向硅钢,其它不利织构组分含量更高,从而导致其二次再结晶后高斯织构发展不够完善,磁感值较低。  相似文献   

7.
通过对取向硅钢脱碳退火的实验研究,比较退火气氛、退火温度和退火时间对取向硅钢脱碳效果的影响。结果表明,在退火温度830℃、保护气氛氢浓度为25%条件下退火3 min,保护气氛露点为40.0、42.5、45.0和47.5℃时,试样碳含量分别为33.2×10-6、26.7×10-6、6.3×10-6和62.8×10-6。在退火温度830℃、保护气氛露点为45℃的条件下退火3 min,保护气氛氢气浓度为10%、25%、40%和55%时,试样碳含量分别为298.0×10-6、6.3×10-6、30.0×10-6和26.5×10-6。在保护气氛露点为45℃、氢气浓度25%的条件下退火2.5 min,退火温度为790、810、830、850和870℃时,试样碳含量分别为195.0×10-6、126.0×10-6、10.1×10-6、52.0×10-6和26.0×10-6。在退火温度830℃、保护气氛氢浓度为25%、保护气氛露点为45℃的条件下,脱碳效果最好。脱碳退火时,试样表面生成的氧化物影响H2O、H2和CO等在炉内气氛和脱碳反应界面间的扩散,这是导致试样碳含量随水氢分压比呈"U"型分布的主要原因。退火温度升高,一方面导致试样再结晶速度增快,基体内位错密度下降加快;另一方面导致碳沿晶内和位错扩散系数增大。这是导致试样碳含量随温度呈反"N"型分布的主要原因。  相似文献   

8.
使用EBSD和XRD技术研究了1.3%Si无取向硅钢在不同退火温度条件下的微观组织、宏观织构和微观取向。分析了退火温度对此成分体系无取向硅钢再结晶组织和织构的影响;讨论了退火温度与无取向硅钢成品板磁性能的关系。实验结果表明:无取向硅钢的退火温度对其再结晶组织和成品板铁损值有影响,随着退火温度的上升,再结晶晶粒平均尺寸增大且铁损值下降。γ纤维织构是再结晶织构中的优势组分,高斯{110}100织构强度也较高。退火温度对再结晶织构也有影响,随着退火温度上升,γ织构的含量不断上升,其中{111}121织构强度高于{111}110织构强度;退火温度的上升降低了立方{100}100织构和旋转立方{100}110织构但增加了高斯{110}100织构的强度,高斯织构的强度在870℃时达8.8。高斯取向晶粒主要在{111}121取向晶粒附近出现,旋转立方取向晶粒主要出现{111}110取向晶粒附近。由于{111}面织构强度增加和立方织构、旋转立方织构强度的降低,随着退火温度的上升,无取向硅钢的磁感应强度下降。  相似文献   

9.
利用SEM、EBSD和XRD等相关技术,研究了脱碳退火工艺对基于CSP工艺取向硅钢再结晶退火后的组织、晶界特征及析出相的影响。结果表明,脱碳退火5 min后,取向硅钢的再结晶晶粒尺寸较小,晶界特征理想,高能晶界Σ3和Σ9富集在{111}112、{112}1 10和{332}533等有利取向周围,促进了二次再结晶过程中高斯晶粒的形成;退火时间为7 min时,大角度晶界和{111}112、{112}1 10、{332}533等有利取向数量下降,不利于高斯晶粒的形核和长大;经不同脱碳退火工艺(3 min、5 min和7 min),析出相总体呈弥散状态分布,析出物在脱碳退火5 min的析出细小且分布均匀。  相似文献   

10.
从高斯晶粒的起源、晶粒抑制剂的作用以及织构和晶界的演变等几方面,介绍了近20年来高斯取向硅钢研究的成果,总结了初次退火对高斯取向硅钢最终退火的影响。对于用来解释二次再结晶过程中高斯晶粒生长的两种主要理论模型之重位点阵理论(CSL晶界)和高能晶界理论作了详述和比较。  相似文献   

11.
退火时间对异步轧制无取向硅钢再结晶织构与磁性的影响   总被引:1,自引:2,他引:1  
对高牌号无取向硅钢进行异步轧制,然后在不同时间下进行再结晶退火,研究异步轧制条件下高牌号无取向硅钢再结晶织构随退火时间的演变过程,探讨高牌号无取向硅钢再结晶织构的形成及再结晶织构组分与磁性的关系。结果表明:在750℃再结晶退火过程中,随着退火时间的延长,α织构强度减弱,织构组分逐渐向{111}〈112〉附近聚集,铁损逐渐下降。快慢辊侧再结晶织构类型基本相同,但慢辊侧强度高于快辊侧。  相似文献   

12.
研究了取向硅钢在初次再结晶过程中的组织和结构变化,包括晶粒长大情况、取向差、重合位置点阵(CSL)及织构的变化。研究表明,820℃盐浴再结晶退火3 s时即完成再结晶,随即发生晶粒长大。在初次再结晶的开始阶段,主要织构是{111}112、{100}110和弱的高斯织构;随着退火时间增加,{100}110织构和高斯织构逐渐减弱,{111}112织构先增强后减弱,并向{111}110和{111}231转化,退火3 min以后出现的{012}001织构是一种促进二次再结晶发展并最终有利于提高二次再结晶磁感和降低铁损的织构。退火时间增加到3 min以后,CSL的∑3晶界比例增加。退火时间增加到30 min时,CSL的∑1晶界比例增加,同时,小角度晶界比例提高,大角度晶界减少。  相似文献   

13.
低温板坯加热法生产高磁感取向硅钢,其磁感低于传统高温高磁感取向硅钢的磁感值。为探究其原因,作为该研究的第一步,测定并对比分析了两种工艺下初次再结晶的晶粒尺寸和织构。结果表明,低温高磁感取向硅钢完成初次再结晶后,晶粒尺寸长大且不均匀,织构组分不够单一,高斯晶核及有利织构{110}<001>、{111}<112>、{111}<110>组分比例低于高温高磁感取向硅钢,其它不利织构组分含量更高,从而导致其二次再结晶后高斯织构发展不够完善,磁感值较低。  相似文献   

14.
以实验室模拟CSP连铸连轧工艺制备的热轧硅钢为基板,通过实验室常化、冷轧和初次再结晶退火实验,采用XRD和EBSD技术对样品从热轧到初次再结晶阶段的织构演变进行了研究。结果表明:GOSS晶粒起源于热轧的次表层,沿着次表层到中心层逐渐降低,热轧板中心层主要为{001}110织构。一次冷轧后,次表层存在强的{001}110和{112}110织构;1/4层存在强的{001}110和{112}110以及较强的{111}112织构;中心层则只存在强的{001}110织构。初次再结晶后,硅钢形成了强点{111}112织构的γ织构,GOSS织构再次出现,且分布在{111}112织构周围。GOSS晶粒周围以35°~55°大角度晶界为主,同时还有很高的Σ3和Σ5重合位置点阵。  相似文献   

15.
采用自主研发的热处理试验装置,完成高磁感取向硅钢27QG090实验室脱碳退火过程,利用蔡司显微镜和X射线衍射仪分析脱碳退火后试样的显微组织和宏观织构。结果表明,高磁感取向硅钢27QG090经实验室脱碳退火后的显微组织类型为铁素体,平均晶粒尺寸为30~40μm。宏观织构主要类型为α织构和α*织构({114}〈481〉、{113}〈361〉等织构),还有微弱的高斯织构{110}〈001〉。经实验室研究选定的最优工艺为850℃脱碳退火7 min。采用该工艺在工业生产线脱碳退火后的宏观织构与实验室脱碳退火后主要织构类型相同。脱碳退火后平均晶粒尺寸为30μm左右时,铁损最低,为0.80 W/kg,磁感应强度可达到1.93 T。  相似文献   

16.
采用蔡司显微镜及JEM-2100型透射电子显微镜(TEM)研究了稀土(Ce)对取向硅钢初次再结晶组织的影响及对抑制剂的演变规律的影响。结果表明,含Ce的取向硅钢在脱碳退火过程中能发展完善的初次再结晶。随退火温度的增加,含Ce试样脱碳退火后的抑制剂析出相颗粒尺寸粗化不明显,抑制剂颗粒平均尺寸比无稀土试样的小。  相似文献   

17.
利用背散射衍射技术(EBSD),在一段式840 ℃不同时间脱碳退火条件下,研究了基于CSP工艺取向硅钢初次再结晶过程中的组织和结构变化。结果表明,在初次再结晶退火时间为4 min时织构类型较多,分别为{332}<`533>、{554}<225>、{111}<110> 、{001}<100>、 {111}<112>、{001}<110>、{110}<001>、{110}<110> 、 {112}<110>、{110}<112>、{112}<1`10>、{012}<001>和{111}<231>等。当初次再结晶退火时间延长为5 min时, {111}<112>取向晶粒数量明显增多,而{332}<`533>和{012}<001>取向晶粒比例下降。同时Σ3、Σ5和Σ9晶界比例升高,小角度晶界比例较少,而大角度晶界比例较多,这将有助于在二次再结晶退火时发生高斯织构。继续延长退火时间到6 min以后,Σ3、Σ5和Σ9晶界比例下降,小角度晶界比例提高,此时再结晶晶粒长大。  相似文献   

18.
采用EBSD检测分析技术研究了Fe-3.2%Si-0.045%Nb低温取向硅钢热轧及常化过程中的织构演变规律。结果表明:热轧板沿厚度方向存在明显的织构梯度,高斯织构主要存在于热轧板的次表层和表层,热轧板次表层Goss织构的取向密度和体积分数较高,占比9.38%,中心层主要是旋转立方织构;常化板充分继承了热轧板的织构类型,次表层和表层的主要织构类型依然是高斯织构,但取向密度和所占比例均明显高于热轧板,并且次表层高斯织构最强,体积分数达13.5%。与热轧板相比常化板取向分布较为分散,部分织构弱化。  相似文献   

19.
利用二次检测的方法,通过对比普通退火处理和脉冲磁场退火处理,研究不同温度下脉冲磁场对高磁感取向硅钢初次再结晶晶粒尺寸的影响。结果表明:随着温度的升高,平均晶粒尺寸增大,且温度小于780℃脉冲磁场促进晶粒长大,温度大于780℃脉冲磁场抑制晶粒长大。此外脉冲磁场抑制小晶粒和中小晶粒数量减少,促进大晶粒数量增加。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号