首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了在黄色金合金中添加不同含量微量稀土元素Ce对合金的影响,包含稀土元素Ce的黄色金合金的中间合金中,稀土在中间合金中除少量固溶在合金基体中外,其余与合金元素反应生成化合物相CeAg6在晶间析出。在金合金中,这些稀土化合物相在熔炼过程中熔入合金熔液中,当Ce含量低于固溶度时,Ce基本上均匀固溶在合金基体中,随Ce含量增加,Ce与金反应生成析出相Au51Ce14在枝晶间隙析出。当微量稀土添加到彩色金合金中时,合金晶粒及铸态组织均得到明显细化。当稀土含量增加到0.5%时,合金发生明显变质作用。微量稀土添加黄彩色金合金中,随稀土添加,合金液相温度区间增大。凝固过程中溶质再分配,造成固液界面前沿成分过冷度增大是稀土在彩色金合金中主要的晶粒细化机理。  相似文献   

2.
Ce对镁及镁合金中晶粒的细化机理   总被引:22,自引:0,他引:22  
研究了Ce对镁及镁合金晶粒细化效果和力学性能的影响。结果表明:纯镁结晶时易形成粗大的柱状晶和扇形晶,加入微量稀土元素Ce后,晶粒被明显细化,柱状晶全部转化成等轴晶。在AZ31合金中添加微量稀十元素Ce,晶粒由未细化前的约300μm下降到约30μm。稀土Ce在镁及AZ31合金中的固溶度很小,在凝固过程中固/液界面前沿Ce容易富集引起成分过冷形成新形核带导致晶粒细化。凝固过程中溶质再分配造成固液界面前沿成分过冷度增大是稀土元素细化镁及镁合金的主要机理。  相似文献   

3.
以“溶胶喷雾干燥-纳米原位复合”合成的超细/纳米W-0.3%Y复合粉末为原料,通过普通模压-预烧和在1800~1950℃下烧结制备细晶钨合金。检测了合金显微硬度和拉伸强度,并利用扫描电镜SEM和X射线能量色散谱(EDX)观察了断口形貌及显微组织,研究其烧结行为及断裂行为变化。结果表明:微量稀土Y以Y2O3二次相粒子的形式均匀弥散分布于W晶粒的晶内和晶界处,能有效抑制W晶粒的长大,显著细化晶粒,提高其力学性能。微量稀土Y的添加改变了W合金的断裂形式,由纯W的沿晶断裂转变为主要沿晶、部分穿晶的断裂方式。  相似文献   

4.
复合稀土对CuZnAl形状记忆合金力学性能的影响   总被引:10,自引:2,他引:10  
采用定量金相、拉伸试验、电子探针和扫描电镜等方法,研究了复合稀土对CuZnAl合金晶粒尺寸、晶粒生长动力学、力学性能的影响。结果表明:复合稀土可明显细化合金晶粒,改善合金的力学性能,合金的拉伸断口形貌由未加复合稀土的沿晶断裂变为韧窝状塑性断口,同时保持合金的记忆性能。微观分析表明:复合稀土富集在CMZnAl合金的晶界上,阻碍晶粒长大。讨论了晶粒细化机制以及合金力学性能提高的原因。  相似文献   

5.
利用OM、XRD、SEM、EDS等方法,研究了不同Ce含量对Mg-2.2Sn-1Al-0.5Zn合金显微组织和力学性能的影响。结果表明:添加适量的稀土Ce能细化晶粒,Ce与Al结合形成高熔点的稀土相Al4Ce,使β-Mg17Al12相数量减少;针状或杆状Al4Ce相分布在晶界周围,阻止了位错运动;合金的抗拉强度、塑性和硬度均随Ce含量的增加呈现先增加后降低的趋势,当Ce含量为0.6%时合金的力学性能最佳。对断口进行扫描分析证明拉伸断裂为穿晶断裂和韧性断裂的混合断裂。  相似文献   

6.
利用 OM、XRD、SEM、EDS 等方法,研究了不同Ce 含量对 Mg-2.2Sn-1Al-0.5Zn 合金显微组织和力学性能的影响。结果表明:添加适量的稀土 Ce 能细化晶粒,Ce 与 Al 结合形成高熔点的稀土相 Al4Ce,使β-Mg17Al12相数量减少;针状或杆状 Al4Ce 相分布在晶界周围,阻止了位错运动;合金的抗拉强度、塑性和硬度均随 Ce 含量的增加呈现先增加后降低的趋势,当 Ce 含量为0.6%时合金的力学性能最佳。对断口进行扫描分析证明拉伸断裂为穿晶断裂和韧性断裂的混合断裂。  相似文献   

7.
以"溶胶喷雾干燥-纳米原位复合"法合成的超细/纳米W-0.3%Y复合粉末为原料,通过普通模压-预烧和在1800~1950℃下烧结制备了细晶钨。检测了细晶钨的显微硬度和抗拉强度,并利用扫描电镜(SEM)和X射线能量色散谱(EDX)观察了显微组织及断口形貌,研究了其烧结行为及断裂行为的变化。结果表明,微量稀土Y以Y2O3第二相粒子的形式均匀弥散分布于W晶粒的晶内和晶界处,能有效抑制W晶粒的长大,显著细化晶粒,提高其力学性能。微量稀土Y的添加改变了细晶钨的断裂形式,由纯W的沿晶断裂转变为细晶钨的沿晶断裂为主+部分穿晶断裂。  相似文献   

8.
铸造Al-5Cu合金准固态断裂行为的研究   总被引:1,自引:0,他引:1  
采用SEM观察手段并结合EDX分析 ,在合金的准固态区 ,通过观察Al 5Cu Mn合金准固态拉伸和热裂应力测试试样的断口形貌 ,研究了Ti、Ce等合金元素及其交互作用对Al 5Cu Mn合金准固态断裂行为的影响及其影响机理。通过对试验合金准固态力学性能的测试和大量SEM断口的观察分析研究 ,结果表明 ,Al 5Cu Mn中添加Ti元素可明显提高合金抗热裂能力 ,主要是由于其良好的细化晶粒效果 ;适量Ce元素的加入 ,不仅可细化晶粒 ,而且其在晶间富集形成的化合物还可有效改善低熔点共晶反应在准固态区的力学行为 ,对减小热裂倾向非常有利 ;Ti和Ce的综合作用对合金抗热裂水平的提高比单一元素更有效 ;热裂的产生首先表现为枝晶枝臂的屈服 ,其后的扩展则表现为脆性断裂占优的穿晶、沿晶混合型特征  相似文献   

9.
《塑性工程学报》2016,(5):131-138
在MP35N合金中添加0.39%的纯稀土Y,探究微量稀土Y对MP35N合金组织和性能的影响。利用金相显微镜OM和扫描电镜SEM、能谱仪EDS、透射电镜TEM对实验合金金相组织、拉伸断口形貌进行分析。结果表明,添加0.39%的稀土Y使MP35N合金再结晶过程中的晶粒细化,但对MP35N合金冷轧变形及时效处理后的力学性能的提高无明显作用,同时并未改变MP35N合金的最佳时效条件,依然为500℃、4h;稀土Y的固溶态未溶解的颗粒在冷轧过程中被压碎拉长,随着时效温度的升高和时效时间的延长,稀土Y扩散均匀;添加稀土Y对孪晶的形成无明显影响,合金的强化机制依然是时效过程中形成的孪晶。  相似文献   

10.
研究了含1wt%Ce的混合稀土的AEZ611镁合金在挤锻复合成形过程中组织与性能的变化。结果表明:加入1wt%Ce混合稀土后,铸态AZ61组织中β相明显减少,Ce与Al结合生成高熔点、高稳定性的Al4Ce稀土相,呈针状或规则块状分布于晶界或晶粒内部;挤压预变形使针状或块状相破碎,铸态组织细化,大量黑色点状相呈条带状分布于晶粒的内部;在模锻成形过程中,试样长度方向不变,合金呈单向流动,消除了挤压态中纤维组织,破碎的Al4Ce稀土相阻碍晶粒或亚晶粒长大,弥散分布于基体内,合金强度进一步提高;但在不同温度下的拉伸试验表明:合金随温度提高力学性能下降,尤其高于130℃时,力学性能下降较快;断口形貌由解理断裂转变为韧性断裂。  相似文献   

11.
Zr对Mg-Ce合金的晶粒大小及铸态组织性能的影响   总被引:3,自引:0,他引:3  
采用普通的熔炼铸造方法,就Zr对Mg—Ce合金的晶粒大小及铸态组织、性能的影响进行了试验研究,并分析了其细化机理,对获得的细晶材料,测试了铸态下的力学性能并与未加细化剂的材料进行比较。结果证明Mg-Ce合金中添加Zr后,其晶粒明显细化,抗压强度明显提高,断口金相及扫描分析证明材料压缩时为穿晶断裂。  相似文献   

12.
陈志强  胡文鑫  石磊  王玮 《铸造技术》2022,(10):897-905
6061铝合金中晶粒和第二相的形态、尺寸及分布对合金的综合力学性能有显著影响。本文通过研究不同比例混合稀土LaCe与Al-Ti-B复合添加对6061铝合金显微组织和晶粒细化效果的影响,讨论了稀土的存在形式及其对合金第二相的作用,分析了稀土与Al-Ti-B协同作用对合金拉伸性能和断口形貌以及导热率的影响。结果表明,添加稀土与Al-Ti-B中间合金后,合金的晶粒尺寸减小;稀土主要以Al FeSiREMg相和Al Si Ti Mg RE的形式分布于晶界。此外,稀土的加入促使β-Al FeSi相转变为α-Al FeSi相,Mg2Si相尺寸减小,形成了Al FeSi、Al FeSiREMg等多种复杂化合物,并减少了晶界富铁相的杂质。与未添加稀土的6061合金相比,添加0.05%LaCe和0.2%Al-Ti-B(质量分数)中间合金的6061铝合金拉伸强度和伸长率以及导热率分别提高15.3%、80%和9%;同时,稀土与Al-Ti-B中间合金结合后,断口形貌中粗糙、不规则韧窝转变为小韧窝,断裂形式为韧性断裂。  相似文献   

13.
采用扫描电镜、能谱研究了添加Ce对AH36船板钢的凝固组织结构、断口及夹杂物形貌的影响,并检测了合金的硬度。结果表明,Ce含量对AH36钢的凝固行为和性能有很大的影响。稀土Ce主要沿晶界分布,细化晶粒,同时改善了夹杂物的形貌,使其在韧窝中的分布更均匀;添加0.02%Ce时,AH36钢的洛氏硬度提高50%。  相似文献   

14.
《铸造》2019,(2)
以Al-7Si-0.7Mg-0.2Fe铝合金为研究对象,利用金相显微镜、扫描电镜和拉伸试验机,研究了不同含量的稀土Ce对Al-7Si-0.7Mg-0.2Fe合金组织与性能的影响。结果表明:稀土Ce可以细化α-Al晶粒,减小二次枝晶臂间距(SDAS)。同时,还可以减小共晶Si的尺寸,使Si形貌由板条状向纤维状转变,具有良好的细化变质效果。此外,Ce还可以细化β-Fe相,改善β-Fe相形态,提高合金的力学性能。特别地,当稀土Ce含量为0.1%时,晶粒尺寸与SDAS最小,分别为82μm、17μm;合金T6热处理态抗拉强度、屈服强度和伸长率均达到峰值,分别为344 MPa、311 MPa、3.77%。随着Ce含量的增加,拉伸断口呈现韧性断裂特征,裂纹主要沿晶界扩展;当Ce含量达到0.3%时,出现大量粗大的含Ce金属间化合物,造成脆性断裂。  相似文献   

15.
微量添加剂对Al—Mg—Si合金铸态组织的影响   总被引:1,自引:0,他引:1  
本文研究了微量稀土(MM)、(Cr Ti)及Al-Ti-B分别或组合加入对Al-Mg-Si合金铸态组织的影响.结果表明:Al-Mg-Si合金中添加微量Al-Ti-B或Cr Ti可显著细化铸态晶粒;Al-Ti=B与MM或(Cr Ti)同时加入不能显著细化合金的晶粒;虽然MM单独加入时既不能细化晶粒,也不能细化枝晶,但当它与Al-Ti-B或(Cr Ti)组合加入时,却能显著细化枝晶;且微量MM与(Cr Ti)同时添加既能显著细化铸态晶粒,又能显著细化枝晶;有效的晶粒细化剂并不一定能有效地细化枝晶,这是由于合金结晶过程中晶粒细化和枝晶细化的机制不同造成的.  相似文献   

16.
研究了不同的稀土含量(富Ce和Mg-Nd中间合金)对AZ61镁合金在热挤压变形过程中显微组织和力学性能的影响。结果表明,在加入1%~4%的混合稀土后,铸态AZ61镁合金组织中的β相明显减少,铸态组织晶粒得到细化,大部分的Ce,Nd与Al结合生成高熔点、高稳定性的稀土相Al4Ce或者Al4Ce和Al3Nd稀土混合相,并呈针状、棒状或者不规则块状分布于晶界或晶粒内部,同时各试验合金中均不同程度分布有不规则的块状α-Al8Mn5相;在热挤压过程中,Al4Ce或者Al4Ce和Al3Nd稀土混合相阻碍晶粒或亚晶粒长大,使晶粒较铸态组织变细,合金力学性能随稀土含量的增加有所提升,但由于稀土相较粗大,割裂晶界及晶粒间的结合力,使其性能大幅度下降;铸态AZ61+xRE各试验合金均为脆性断裂机制,挤压态AZ61合金断裂方式属于以韧性为主的韧脆混合断裂,含稀土挤压态合金中分布有塑性特征的韧窝,但主要以解理断裂为主。  相似文献   

17.
借助光学显微镜、扫描电镜和万能力学试验机研究元素铼对铱显微组织和力学性能的影响。结果表明,添加元素铼可以细化铱的晶粒,显著改善铱的显微组织。随着铼含量的增加,在固溶强化和细晶强化作用下,铱铼合金的屈服强度和抗拉强度呈现先上升后下降的趋势,当铼质量分数为7.0%时屈服强度和抗拉强度达到最大值为472.0和526.0 MPa;而在铱中添加铼以后,铱铼合金的延伸率先降后升,其中纯铱的延伸率最高为2.52%。室温下铱铼合金的断口呈脆性沿晶断裂和脆性穿晶断裂的混合断裂模式,加入元素铼后断口形貌中脆性穿晶断裂区域明显增多。  相似文献   

18.
采用熔铸法制备了稀土La元素含量不同的Zn-Cu-Ti-Mg合金,研究了稀土元素La对Zn-Cu-Ti-Mg合金微观组织、断口形貌和力学性能的影响。结果表明:在稀土元素La含量小于1%(质量分数)时,随着La的加入,Zn-Cu-Ti-Mg合金的铸态组织中枝晶明显减少,枝晶臂缩短,晶粒细化;稀土元素与杂质形成化合物,能够清除晶界杂质,抑制杂质元素的有害影响。随着稀土元素含量的升高,Zn-Cu-Ti-Mg合金的硬度和塑性不断提高,强度先减小后增大,断裂机制也由解理断裂变为微孔聚集型断裂。  相似文献   

19.
铈对镁合金AZ31晶粒大小及铸态力学性能的影响   总被引:36,自引:6,他引:36  
张世军  黎文献  余琨 《铸造》2002,51(12):767-771
试验采用普通的熔炼铸造方法,就稀土Ce对镁合金AZ31晶粒大小及其铸态力学性能的影响进行了研究。Ce含量<1%时随着Ce含量的增加AZ31晶粒越来越细,超过1%时晶粒又变粗。对获得的细晶材料进行了铸态下力学性能的测试并与未加细化剂的材料进行比较,发现抗拉强度和塑性都明显提高。断口扫描分析证明拉伸时断裂为明显的沿晶断裂,压缩时为穿晶断裂。  相似文献   

20.
通过成分分析、组织观察及力学性能测试等手段,研究了微量Al对Mg-Gd-Y-Nd-Zr合金铸态组织及室温力学性能的影响,分析了合金中相的组成,成分的沉降规律以及合金的断裂方式。结果表明,铸态Mg-Gd-Y-Nd-Zr镁合金主要由α-Mg基体和共晶组织构成,晶粒近似呈等轴状,晶粒尺寸约为40μm,铸锭轴向不同位置成分偏差较小,晶粒尺寸较为均匀;添加微量Al后成分分布发生明显变化,顶部及底部的晶粒尺寸出现显著差异;同时合金的力学性能也随位置不同而不同,均小于原始Mg-Gd-Y-Nd-Zr镁合金;合金断裂方式主要是沿晶界的脆性断裂,断口中存在明显的二次裂纹。添加Al后,与RE形成Al2RE相,与Zr形成Al3Zr相,液态即形成的大密度Al2RE及Al3Zr相在熔体中沉降,使得元素分布不均,顶部Zr含量明显减小,造成晶粒显著增大;Al2RE与Al3Zr相的存在降低了合金塑性,恶化铸态组织,导致合金发生沿晶脆性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号