首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Q235钢表面氩弧熔覆Mo-Si复合涂层组织和性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以钼粉、硅粉为原料,利用氩弧熔覆技术在Q235钢基材表面原位合成了FeMoSi/Fe3Si金属硅化物复合涂层,应用SEM,XRD对涂层的显微组织和物相进行了分析,并测试了涂层显微硬度和常温耐磨性.结果表明,复合涂层与基体界面无气孔、裂纹,呈冶金结合;复合材料涂层由α-Fe,初生相FeMoSi三元金属硅化物树枝晶和枝晶间的鱼骨状FeMoSi/Fe3Si共晶组织组成;涂层的显微硬度达到1 000 HVO.2,较基体提高3倍左右;相对耐磨性较基体Q235钢提高近11倍.  相似文献   

2.
以W粉、C粉和Ni60A粉为原料,采用氩弧熔覆工艺在Q235钢基体上制备出原位自生(Fe, W, Cr)23C6增强Ni基复合熔覆层.借助扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计及滑动磨损试验机对复合熔覆层的显微组织、硬度、耐磨性进行了研究.结果表明,熔覆层与基体呈冶金结合,无裂纹、气孔等缺陷,涂层显微硬度的最大可达1213 HV,耐磨性比Q235钢提高18倍,在室温干滑动磨损试验条件下具有优异的耐磨损性能.工业试验表明使用该技术在16D、24D叶轮表面制备的耐磨熔覆层,可使其使用寿命提高3倍以上.  相似文献   

3.
等离子熔覆添加碳化钨的铁基合金涂层的研究   总被引:2,自引:1,他引:1  
为了提高钢铁材料表面的硬度和耐磨性,采用等离子弧在Q235钢基体上熔覆添加50%镍包WC的Fe-Cr-B-Si合金粉末,制备了具有冶金结合的复合涂层.采用SEM、EDS、XRD等研究了涂层的组织,利用显微硬度计测试了涂层的显微硬度分布.结果表明:Q235钢表面经等离子熔覆形成的复合涂层中,WC颗粒部分溶解于铁基合金,WC颗粒与涂层界面形成厚达数微米的反应层,有效提高了涂层与WC的界面结合强度.涂层由基体组织γ-Fe枝晶,颗粒状WC、Fe3W3C、Fe6W6C、W2C等相组成,其显微硬度可达560~820HV0.2.  相似文献   

4.
《焊接》2015,(6)
以Ni60A粉、TiC粉、TiN粉、WC粉和Co粉为原料,在Q235钢的表面用氩弧熔覆原位合成技术制备了Ti(C,N)-WC增强镍基复合材料涂层。分析了涂层的显微组织、化学成分、硬度变化和摩擦磨损特性。研究结果表明:熔覆层组织主要由富Ni的γ(Ni,Fe)相,Ti(C,N),WC和(Fe,Cr);C等组成。与Q235钢基体相比,涂层的显微硬度和耐磨性分别是基体Q235钢的6.5倍和10倍。显微硬度由表及里呈先上升后下降的阶梯状趋势,到热影响区时又明显降低。基体Q235钢的磨损机制为粘着磨损和磨料磨损,而复合涂层的的磨损形式主要是磨屑充当第三体引起的磨粒磨损。  相似文献   

5.
利用真空烧结熔覆技术在Q235钢基体上制备Ni60涂层,并对Ni60涂层的显微组织、硬度、耐磨性和耐腐蚀性进行分析。结果表明:Ni60涂层主要由γ-(Ni,Fe)、CrB和Cr_(23)C_6等相组成,涂层与基体界面处冶金结合良好;涂层的表面硬度为58.3 HRC,横截面上自表面到基体的硬度自676 HV0.2到220 HV0.2呈梯度分布;涂层的耐磨性为Q235钢的21.7倍,磨损机制为轻微的塑性切削和硬质相的脆性剥落;涂层的耐腐蚀性明显优于基体。  相似文献   

6.
以W粉、C粉和Ni60A粉为原料,采用氩弧熔覆工艺在Q235钢基体上制备出原位自生(Fe,WCr)23C6增强Ni基复合熔覆层。借助扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计及滑动磨损试验机对复合熔覆层的显微组织、硬度、耐磨性进行了研究。结果表明,熔覆层与基体呈冶金结合,无裂纹、气孔等缺陷,涂层显微硬度的最大可达1213HV,耐磨性比Q235钢提高18倍,在室温干滑动磨损试验条件下具有优异的耐磨损性能。工业试验表明使用该技术在16D、24D叶轮表面制备的耐磨熔覆层,可使其使用寿命提高3倍以上。  相似文献   

7.
采用激光熔覆工艺和电火花沉积工艺在Q235钢上熔覆铁基合金粉末和WC陶瓷硬质合金,形成复合涂层.采用X射线衍射仪、扫描电镜、显微硬度计等对复合涂层的相结构、显微组织、显微硬度及耐磨性能进行了分析.结果表明:复合涂层主要是由Fe3W3C、Co3W3C、Si2W、W2C和(Fe0.51Mn0.46 Ni0.03)6C等相组成;复合涂层与基体呈冶金结合,复合涂层中电火花区域中细小的硬质相弥散分布于沉积层中;复合涂层的厚度为140~160 μm,其中电火花沉积区域约为40μm,激光熔覆工艺的涂层厚度为100~120 μm;电火花沉积层的硬度最高可达1262.9 HV,平均硬度为1151.6 HV,电火花沉积区域与激光熔覆区域之间的过渡区域的显微硬度为884.8 HV,激光熔覆区域的显微硬度平均值为578.3 HV;复合涂层的耐磨性较基体耐磨性提高2.3倍,强化层的磨损机理主要是磨粒磨损、粘着磨损和氧化磨损.  相似文献   

8.
武扬  虞钢  何秀丽  宁伟健 《焊接学报》2012,33(2):37-40,44
以纯钨粉末为熔覆材料,采用同轴送粉激光熔覆技术,在Q235A钢表面制备了Fe-W合金耐磨涂层.利用X射线衍射(XRD)、光学显微镜、扫描电镜(SEM)及能谱(EDS)对熔覆层的显微组织进行了分析,用显微硬度计和摩擦磨损试验机对熔覆层的硬度和耐磨性进行了测试.结果表明,熔覆层与基底冶金结合,无明显裂纹或气孔,涂层内部由致密的粗大树枝状和短棒状Fe7W6增强相以及弥散分布的细小颗粒状Fe2W相组成,其均匀分布在α-Fe固溶体中.熔覆层平均硬度700 HV,为基材Q235A钢的3.5倍,同时耐磨性能也得到了显著提高.  相似文献   

9.
Q235钢氩弧熔覆铁基合金涂层的耐磨性研究   总被引:4,自引:0,他引:4  
郭国林  张娜  王俊杰  李刚 《铸造技术》2012,33(6):674-676
和用氩弧熔覆技术,选择合适的工艺参数,在Q235钢材表面熔覆了铁基合金耐磨涂层.通过金相显微镜和SEM分析了熔覆涂层的显微组织,并测试了涂层的显微硬度和耐磨性.结果表明,在Q235钢表面制备了以马氏体组织和γ-(Fe-Cr-Ni-C)合金固溶体为基体,以(Cr,Fe)7C3、Fe3C、Fe2B等化合物为增强相的合金涂层;涂层的显微硬度可达600 HV;涂层的耐磨性较基体提高近8倍.在低碳钢表面熔覆一层耐磨材料,既保留了低碳钢较高的塑、韧性,又提高了表面层的硬度和耐磨性.  相似文献   

10.
以Ti粉、C粉、WC和Ni60A粉末为原料,利用氩弧熔覆技术在Q235钢基材表面成功制备出Ni基增强相复合涂层,应用OM,SEM,XRD对复合涂层的显微组织和物相进行了分析.结果表明,复合涂层物相由TiC和(Ti,W)C颗粒,γ-Ni奥氏体枝晶和枝晶间的M23C6共晶组织组成,TiC颗粒相细小弥散的分布在基体上,颗粒尺寸大约1.5μm.显微硬度和耐磨性测试结果表明,涂层的显微硬度较基体Q235钢提高4倍以上;常温干滑动磨损条件下,复合涂层具有优异的耐磨性.  相似文献   

11.
采用反应氮弧熔覆技术在Q235A钢试件表面原位合成了Ti(CN)/Fe金属陶瓷复合涂层。利用扫描电镜、XRD射线衍射仪、显微硬度计、摩擦磨损试验机、电化学工作站分析了涂层形貌、涂层物相、涂层显微硬度及其耐磨耐蚀性能,并与Q235A钢进行了硬度、耐磨耐蚀对比试验。结果表明:涂层主要由Ti(CN)、Fe及少量的TiO2相组成,Ti(CN)呈细小颗粒状,涂层为良好的冶金结合;与Q235A钢相比,硬度提高了约3倍,摩擦系数约为Q235A的2/3,磨损量约为Q235A的1/2;在5%H2SO4溶液中,Ti(CN)涂层的腐蚀速率约为Q235A的1/3,在3.5%NaCl溶液中,Ti(CN)涂层的腐蚀速率约为Q235A钢的1/4。  相似文献   

12.
在喷涂材料Fe/WC中添加少量的纳米Ni、纳米CeO2以及不同含量的纳米WC,采用亚音速火焰喷涂方法在Q235钢上制备涂层,通过对涂层组织及性能的检测,探讨纳米WC对涂层显微组织、显微硬度以及耐磨性的影响。结果表明,添加适量的纳米WC可以改善涂层组织,提高涂层的显微硬度及其耐磨性。  相似文献   

13.
采用等离子弧熔覆工艺,以Fe、Zr、B_4C粉为原料,在Q235钢表面原位合成了含ZrB_2-ZrC增强相的Fe基陶瓷复合涂层,并研究了不同粉末配比对该涂层微观组织、显微硬度和耐磨损性的影响。用金相显微镜(OM)、高扫描电镜及X射线衍射仪分析了该涂层的显微组织及物相结构;采用自动显微硬度计、磨损实验机和多功能摩擦磨损实验机对该涂层的硬度及耐磨性能进行研究。结果表明,ZrB_2、ZrC陶瓷相在等离子弧作用下合成,ZrB_2呈针棒状,ZrC呈颗粒状。该涂层与基体间为冶金结合;随粉末中B_4C和Zr含量的增加,该涂层的硬度及耐磨性先升高后下降。  相似文献   

14.
为了探索制备工艺对高熵合金涂层组织与性能的影响,利用氩弧熔覆方法在Q235钢表面制备了等摩尔比CoCrFeNiMo高熵合金涂层.采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等研究了涂层的组织形貌及物相,采用显微硬度计和摩擦磨损试验机分析了涂层的硬度和耐磨性.结果 表明:采用氩弧熔覆方法能成功在Q235钢表面制备出厚度在2 mm以上的CoCrFeNiMo高熵合金涂层;靠近涂层顶部,熔覆电流对涂层的组织影响明显;随着熔覆电流的增加,涂层中上部过渡区组织由胞状晶向枝状晶和等轴晶转变,同时出现晶粒细化现象,BCC、FCC两相固溶体逐渐转变到BCC单相固溶体.随熔覆电流的增加,涂层的硬度和耐磨性均先升高后降低,涂层表层硬度最大,向基体方向呈下降趋势.当熔覆电流为200 A时,涂层的表层硬度最高,达626.7 HV0.2,约为Q235基体的4倍,其耐磨性也最好.涂层的磨损机制主要为粘着磨损,熔覆电流为200 A制备的涂层伴随有磨粒磨损.  相似文献   

15.
以Fe2O3,WO3,Al,C为反应原料,采用SHS-离心法制备W-C-Fe内衬复合钢管。利用X射线衍射(XRD)、扫描电镜(SEM)分析了涂层的组织,用显微硬度仪测量内衬层硬度,并通过磨粒磨损试验测量了该涂层的耐磨性。结果表明,涂层组织包括主相Fe3W3C及少量的WC,W2C,Fe3C,Fe。涂层组织呈梯度分布,靠近基体处晶粒细小,远离基体处晶粒呈粗大树枝状。涂层硬度为13.5±1.6GPa。涂层的主要磨损机制为显微切削。涂层的相对耐磨性是淬火45#钢的16倍以上。  相似文献   

16.
以钛铁粉、石墨粉、还原铁粉等合金粉末为原料,采用药芯焊丝技术在Q235钢表面制备出TiC金属基耐磨堆焊涂层。通过药芯焊丝配方的研究设计,借助扫描电镜、能谱仪对涂层的显微组织进行分析,并且测试了涂层的微观硬度及湿砂磨损性能。结果表明,显微组织主要由原位合成的TiC、Fe基体相组成。原位合成的TiC颗粒大小约2μm,弥散均匀的分布在涂层中,涂层平均显微硬度820 HV0.2,相对耐磨性是Q235钢基体的13倍,具有良好的耐磨性能。  相似文献   

17.
以Ti粉、C粉、Fe粉为原料,利用氩弧熔覆技术在Q235钢表面原位合成了TiC增强Fe基复合涂层,分析了涂层的显微组织和物相,测定了涂层的硬度。结果表明:复合涂层与基体界面无气孔、裂纹,呈冶金结合;熔覆层组织由树枝晶、等轴晶组成,TiC主要分布于晶粒内和晶界处;涂层显微硬度随TiC含量的增加而增大。  相似文献   

18.
在Q235钢试样上刷涂A1粉,并应用等离子表面重熔技术在试样上制备Fe3Al金属化合物覆层。用x射线衍射仪分析了覆层的相组成。用金相显微镜观察组织结构。用显微硬度计测试了Vickers硬度。实验结果得出,覆层中的主相为Fe3Al,次为Fe,含有少量的A1203和微量的SiO2;覆层中的Fe3Al呈针状和短棒状分布;覆层的Vickers硬度达10000MPa,较基体的硬度有大幅提高。在Q235钢部件上熔覆Fe3Al金相化合物后提高了耐磨性,耐腐蚀性,并增加部件的结构强度。  相似文献   

19.
利用激光重熔工艺对在45钢表面预置的Fe基复合陶瓷涂层进行处理,探讨了不同激光功率(600 W、800 W和1000 W)的重熔处理对涂层组织及摩擦学性能的影响。结果表明,激光重熔使涂层与基体间发生了元素转移;得到了内聚强度更高的复合涂层;不同激光功率下涂层的显微硬度与耐磨性均远高于等离子喷涂Fe基复合陶瓷涂层,其中激光功率为800 W时的Fe基复合陶瓷涂层的显微硬度最高,耐磨性能最好。硬质陶瓷相WC颗粒、纳米级Si C颗粒及其原位生成的化合物Fe Si、Si C及M_7C_3起到了弥散强化作用,改善了涂层磨损特性,从而提高了涂层的耐磨性能。  相似文献   

20.
采用粉末预置法,在Q235钢表面激光熔覆Fe-Al复合涂层。采用SEM、XRD等方法分析了涂层的显微组织和物相结构,研究了不同激光工艺参数对涂层显微硬度和耐磨性的影响。结果表明,在优化工艺参数下,涂层与基体形成了良好的冶金结合,组织均匀细密,涂层中含有Al2O3硬质颗粒相及金属间化合物Fe3Al,其硬度和耐磨性得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号