共查询到20条相似文献,搜索用时 51 毫秒
1.
2.
采用分离式霍普金森拉杆及压杆装置,研究挤压态AZ31镁合金高速变形下的各向异性及拉压不对称性,并从微观变形机制的角度探讨具有强烈初始基面织构的挤压态镁合金各向异性及拉压不对称性产生的原因。结果表明:在高速变形条件下,依据加载方向及应力状态挤压态AZ31镁合金的拉伸行为表现出很强的各向异性,但压缩行为的各向异性不明显;在挤压方向表现出很强的拉压不对称性,而在垂直于挤压方向的拉压不对称性很低。挤压态AZ31镁合金宏观上的各向异性及拉压不对称性是由于不同的微观变形机制所引起的。沿挤压方向拉伸的主要变形机制为柱面滑移,沿垂直于挤压方向拉伸及压缩的主要变形机制为锥面滑移;沿挤压方向压缩时初始变形机制为拉伸孪晶,当变形量为0.08(8%)左右时由于孪晶消耗殆尽,变形变而以滑移的方式进行。 相似文献
3.
在300~400 ℃对铸态AZ31镁合金进行平均应变速率为10~29 s-1的高应变速率轧制,研究轧制后镁板边裂、组织及力学性能的各向异性。结果表明:随着平均应变速率的增加,轧制边裂得到改善,350 ℃和400 ℃下边裂长度变化相比300 ℃时更加平缓;晶粒尺寸在温升和应变速率综合作用下并不随平均应变速率的增加而减小,反而出现波动;在相对较低的应变速率下,由于组织中长条形晶粒的存在,导致板材的各向异性明显;随着平均应变速率的增加,长条形晶粒减少,再结晶完全,组织趋于均匀,轧板的各向异性得到改善;轧板拉伸断口中可观察到撕裂棱和韧窝,以韧性断裂方式为主。 相似文献
4.
《特种铸造及有色合金》2015,(1)
采用超声振动制备了Mg-6Zn-3RE-1.4Y新型镁合金的半固态浆料,并对半固态浆料进行直接挤压铸造。研究了流变挤压铸造Mg-6Zn-3RE-1.4Y镁合金的组织和相组成。结果表明,Mg-6Zn-3RE-1.4Y合金流变挤压铸件组织中存在两种细小圆整但尺寸差异较大的α1-Mg和α2-Mg晶粒,α1-Mg平均晶粒尺寸和形状系数分别为22μm和0.74,α2-Mg为浆料中剩余液相形成的以球形为主的细小晶粒。合金的相组成主要为α-Mg基体、α-Zr以及沿晶界分布的Mg12Ce、Mg12La以及I-Mg3Zn6Y相。 相似文献
5.
高应变速率下AZ31B镁合金的压缩变形组织 总被引:1,自引:0,他引:1
采用分离式Hopkinson杆在应变速率为496~2 120 s-1范围对挤压态AZ31B镁合金进行了高速冲击压缩实验,并采用金相显微镜对压缩后镁合金的组织演变规律进行研究.结果表明:在不同应变速率下变形时,挤压态AZ31镁合金的应力-应变曲线几乎重合,说明AZ31B镁合金的应力对应变速率不敏感;但其显微组织变化对应变速率非常敏感,当变形速率较低时,其组织几乎全部由孪晶组成;当应变速率增加时,孪晶数量减少;在应变速率相对较低时(496 s-1),镁合金变形主要以孪生方式进行;当应变速率较高时(2 120 s-1),除孪晶变形之外,柱面滑移和锥面滑移也可能启动以协调变形. 相似文献
6.
采用Gleeble热模拟方法研究Mg?6Zn?1Al?0.3Mn 变形镁合金在温度为200~400°C,应变速率为0.01~7 s?1条件下的热压缩变形行为。结果表明,变形温度和应变速率显著影响其热变形行为。通过计算获得了热变形激活能及应力指数分别为Q=166 kJ/mol,n=5.99,且其本构方程为ε&=3.16×1013[sinh(0.010σ)]5.99exp [?1.66×105/(RT)]。热压缩显微组织观察表明:在应变速率为0.01~1 s?1的条件下,在250°C热压缩变形时初始晶粒晶界及孪晶处发生了部分动态再结晶,而在高温(350~400°C)条件下,发生了完全动态再结晶且再结晶晶粒尺寸随着应变速率的增加而减小。获得的较优的变形条件为温度330~400°C、应变速率为0.01~0.03 s?1以及350°C、应变速率为1 s?1。 相似文献
7.
在温度为25至300 ℃ 应变速率为0.001至0.1 s-1的范围内研究了 Mg-1Y (wt.%) 挤压板材的拉伸变形行为。在0.1 s-1的应变速率下,当温度从室温增加至300 ℃时抗拉强度从247.9 ± 5.8 MPa降低了49.3 %。本文研究的板材即使在室温下也表现出了明显的应变速率敏感性。室温下当应变速率从0.1 s-1降低至0.001 s-1,抗拉强度降低11.8 %。在室温和250 ℃温度范围内可以通过Garofalo双曲正弦本构方程来描述合金的流变行为。测得的应力指数n为27.8 ± 8.9,激活能Q为124.6 ± 6.1 kJ/mol,Q值意味着变形是位错攀移控制。在中间温度( ~ 150 – 250 ℃)时板材表现出锯齿流变行为,这种现象在较低应变速率更明显。同时断裂延伸率随着温度升高而反常地降低。认为上述两种变形特征和Y原子和位错的强烈的相互作用有关系,这种作用即为动态应变时效(DSA)。应变速率敏感因子(m)随温度增加而增加。在300 ℃下m从0.068增加至0.11,说明Y元素的添加可以激活更多滑移系。变性后显微组织的观察表明孪晶被温度抑制,同时与增加的m相一致。300 ℃下观察到有动态再结晶(DRX)的出现,应变速率越低DRX越明显。 相似文献
8.
研究了Mg-4Zn-0.5Er-1Y变形合金轧制板材在经200~380℃,保温0.5~4h退火处理后,合金显微组织的演变及其力学性能的变化规律。结果表明,该合金退火后均出现明显的动态再结晶组织,且晶粒比较细小,基体中存在大量含有稀土元素的第二相,这些第二相在热轧状态下破碎成细小的颗粒,促进了动态再结晶晶粒的异质形核。合金退火处理后的强度较原轧制态降低,但塑性却得到明显的改善。最佳退火温度为350℃,保温0.5h后晶粒尺寸约为8μm,抗拉强度为276MPa,伸长率达到最大为22.5%。经过计算可知,该合金再结晶晶界迁移激活能为22.76kJ/mol,同时建立了该合金再结晶晶粒长大的动力学模型。 相似文献
9.
在300~400℃、0.003~1 s-1变形条件下,采用Gleeble-1500型热模拟试验机对Mg-8Al-1Zn-1Y镁合金进行热压缩实验。依据加工硬化率曲线拐点特征构建了合金热变形过程中的动态再结晶临界应变模型,并根据临界条件构建了合金的动态再结晶动力学模型,并分析了不同变形条件对合金动态再结晶的影响。结果表明:变形温度和应变速率对Mg-8Al-1Zn-1Y镁合金的热变形行为有显著的影响,其流变曲线表现出典型的动态再结晶特征,并且提高变形温度和降低应变速率都将促进动态再结晶的发生;在本实验条件下,Mg-8Al-1Zn-1Y镁合金的加工硬化率曲线均具有拐点特征,得到了合金在变形温度为300~400℃及应变速率为0.003~1 s-1条件下所对应的临界应变εc和峰值应变εp,并获得了合金临界应变模型和动态再结晶动力学模型,合金显微组织特征验证了所获得的临界应变模型和动态再结晶模型的准确性。 相似文献
10.
Mg-6Zn-1Mn镁合金的热压缩变形行为及加工图 总被引:1,自引:0,他引:1
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了Mg-6Zn-1Mn合金在变形温度250~450℃、应变速率0.001~10 s-1范围内的流变应力行为,采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系;并以热压缩试验为基础,建立并初步分析了Mg-6Zn-1Mn合金的DMM加工图。结果表明:Mg-6Zn-1Mn合金在热压缩过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与试验值较吻合;建立的加工图表明合金高温变形时存在2个失稳区域,而在温度325~425℃、应变速率0.01~0.365 s-1范围内出现1个非失稳区、功率耗散峰值区,该区域最适合Mg-6Zn-1Mn合金进行热加工。 相似文献
11.
《稀有金属材料与工程》2017,(8)
研究了热挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为和微观组织演变,分析了该合金在温度为623~723 K,应变速率为10~(-4)~10~(-2) s~(-1)条件下的流变应力随温度和应变速率的变化,归纳了温度、应变速率与流变应力的关系。研究结果表明:温度和应变速率是影响流变应力的主要因素,在变形过程中,流变应力随变形温度的升高和应变速率的降低而减小。在本实验条件下,该合金的变形本构方程可用双曲正弦函数ε=A[sinh(ɑσ)]~nexp(-Q/RT)来描述,应力指数n=3.286,激活能Q=238 k J/mol,表明该合金的高温塑性变形机制主要是位错滑移和攀移。 相似文献
12.
13.
14.
15.
在0.001~4800s-1应变率范围,研究了Mg-3Al-2Zn-2Y合金的室温压缩性能。结果表明:合金经1300s-1压缩后,基面与非基面的位错滑移形成平行、弯曲与缠结的混合位错组态;经1800与4800s-1压缩后出现孪生;上述微细观变化导致合金流变应力与极限强度在0.001~1800s-1范围具有应变率强化效应;合金经4800s-1压缩后,出现了以再结晶晶粒与孪生晶粒共同形成的变形局域化区域,导致力学性能比1800s-1时有所下降。 相似文献
16.
采用金相显微镜、万能试验机、导电率测量仪研究轧制温度360℃下18%~55%轧制变形量对铸态Mg-3Al-1Zn-0.2Mn镁合金的显微组织和性能的影响.结果 表明:铸态合金组织明显为枝晶,晶界处有大量Mg17Al12金属间化合物分布.随着轧制变形量的增加,合金中晶粒越来越细化,组织越来越均匀.与铸态合金相比,轧制合金... 相似文献
17.
《中国有色金属学报》2016,(8)
采用Gleeble-3500热模拟试验机对Mg-5Zn-1Mn镁合金进行大变形(变形量为80%)热压缩实验,研究变形温度为250~400℃、应变速率为1~40 s-1范围内变形过程中合金的组织演变规律和流变行为。结果表明:该合金在上述工艺条件下进行热压缩变形时均发生了明显的动态再结晶,且高应变速率下获得的再结晶组织在较低应变速率下更为均匀、细小。通过分析流变应力变化过程中对应的微观机理,表明高应变速率更利于Mg-5Zn-1Mn镁合金实现大塑性变形。Mg-5Zn-1Mn合金的变形激活能随着变形温度的升高和应变速率的增大而减小。 相似文献
18.
对铸造Mg-5Zn-0.6Zr-1RE-2Y镁合金进行450℃固溶+100℃时效处理,时效时间0~5个月,并通过显微硬度测试、XRD、光学金相、SEM、EDS等方法对合金时效过程中的合金相和显微组织的演变进行了研究.结果表明,450℃×12 h固溶和100℃时效后,合金随时效时间延长,晶内时效硬化效应增强,100℃时效3个月时达到硬化峰值87 HV.时效初期时合金晶内析出W相,随着时效时间的延长,合金晶内形成长周期结构X(Mg12 YZn)相,并析出β'1(MgZn)相,且含量逐渐增多.长周期X(Mg12 YZn)相和细小针(棒)状的β'1(Mgzn)相的形成是Mg-5Zn-0.6Zr-1RE-2Y合金低温时效强化的两个主要来源. 相似文献
19.