首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大雁第二煤矿采用瓦斯抽放技术,解决了综放工作面上隅角及回风巷瓦斯超限的难题,但解决风排瓦斯不能实现安全体积分数之下回采。利用ZYW-85型井下移动式瓦斯抽放泵站,通过管路系统、高位钻孔、垂直钻孔和顶板巷等技术,试验研究综放工作面采空区瓦斯抽放,达到综放工作面上隅角及回风巷瓦斯体积分数降到规定的安全体积分数以下,保证了安全生产。  相似文献   

2.
胡英  王关亮  鹿小虎 《煤炭技术》2020,39(4):136-139
针对厚煤层综放工作面瓦斯治理难度大、抽采效果差、工作面难以消突的问题,开展了综放工作面立体瓦斯抽采技术研究。立体瓦斯抽采技术包括保护层开采、工作面回采区域顺层钻孔预抽、回风巷留管抽采瓦斯、利用尾巷抽采瓦斯、顶板高位钻孔及底板拦截钻孔抽采瓦斯。通过对P41104综放工作面研究表明:7~#煤层距11~#煤层42 m,作为11~#煤层的上保护层开采是有效的,消除了11~#煤层的突出危险性。立体瓦斯抽采技术的实施,使工作面瓦斯抽采纯量达到25.86 m3/min,抽采率达73%,回风流瓦斯浓度稳定在0.7%以下,减少了瓦斯涌出量,有效解决了工作面上隅角与回风流瓦斯超限问题。  相似文献   

3.
针对乌达矿区近距离高瓦斯煤层群的具体条件,在对9#煤层开采底板破裂规律、顶板"三带"数值模拟、工作面瓦斯涌出等方面进行分析和研究的基础上,根据各矿井瓦斯治理装备的配备情况,提出工作面走向顺层长钻孔预抽、卸压拦截抽采、顶板走向高位水平长钻孔抽采、风巷机巷上向钻孔抽采,以及上隅角埋管抽采的立体瓦斯治理技术方案,现场应用表明,回风瓦斯体积分数约为0.30%,上隅角瓦斯体积分数约为0.45%,解决了该矿区9#和10#煤层开采时的瓦斯超限问题。  相似文献   

4.
综采工作面初采期局部高抽巷瓦斯治理效果分析   总被引:14,自引:0,他引:14  
以开元煤矿9801综放工作面为研究对象,针对综放工作面初采期瓦斯频繁超限的问题,结合工作面上覆煤岩层覆存状态及采动破断规律,提出了9801综放工作面初采期局部高抽巷布置方案:局部高抽巷分为初采倾向高抽巷段、走向高抽巷段和辅助倾斜高抽巷段3段,顺序联结成抽采系统;初采倾向高抽巷段布置在6号煤层中,至开切眼水平距离为15 m;走向高抽巷段布置在3号煤层中,至工作面的垂直距离为43 m,与回风巷的距离为4 m。现场实际应用表明:回风瓦斯体积分数控制在0.6%左右,尾巷瓦斯体积分数控制在1.4%左右,较好地解决了9801综放工作面初采期瓦斯超限断电问题。  相似文献   

5.
以五虎山煤矿011203工作面为工程实例,分析了011203工作面受上覆煤层火区、采空区自然发火及瓦斯涌出的影响,构建复合灾害治理模式,采取走向+倾向交错钻孔联合大面积区域抽采煤层瓦斯,井上填埋黄土及井上下注液氮,回风巷施工高位钻孔、采空区埋管抽采,以及均压通风等综合治理技术,应用结果表明,工作面回采期间上隅角瓦斯浓度不超过0.8%,回风巷瓦斯浓度不超过0.5%,上隅角和回风流CO体积分数均为0,复合灾害治理效果明显,保证了受火区威胁易燃近距离煤层群综放工作面的安全生产。  相似文献   

6.
《煤矿开采》2017,(5):92-95
为解决综放面、采空区及上隅角瓦斯频繁超限问题,以五阳煤矿7603综放面为工程背景,提出了高抽巷抽采瓦斯方案,通过理论计算得到高抽巷与煤层顶板垂直距离为35m,与回风巷水平距离为40m;利用数值模拟对5种方案下瓦斯抽采效果进行分析,得到当高抽巷位于层位2时,即S=40m,H=35m时瓦斯抽采效果最好,上隅角和回风巷瓦斯浓度为0.5%~0.7%;工业性试验结果表明:正常生产期间回风巷瓦斯浓度在0.5%~0.6%范围内,上隅角瓦斯浓度在0.6%~0.8%范围内,瓦斯浓度能够控制在0.8%以内,保证了7603综放面正常安全高效生产,为类似条件工作面回采提供指导。  相似文献   

7.
照金煤矿综放工作面瓦斯治理技术与应用   总被引:2,自引:2,他引:0  
为了有效解决综放工作面回风隅角瓦斯长期超限问题,照金煤矿采取了风障导风、矿用瓦斯自动引排系统、回风隅角插管抽放、高低位钻孔抽放等一系列瓦斯治理技术.经过对比分析:风障导风效果有限,可靠性差;矿用瓦斯自动引排系统将回风隅角最大瓦斯体积分数由2.85%降低到1.92%,不能从根本上解决瓦斯超限问题;回风隅角插管、高低位钻孔抽放瓦斯的最高体积分数分别达到12%和25%,大幅降低了采空区瓦斯积聚量.结果表明:采用高低位钻孔抽放技术,配合风障导风,回风隅角瓦斯体积分数可控制在0.8%以下,彻底解决了回风隅角瓦斯超限问题,确保了回采工作面的安全生产.  相似文献   

8.
高瓦斯综采工作面瓦斯治理技术研究   总被引:2,自引:2,他引:0  
W3227工作面为高瓦斯矿井首采工作面,针对该工作面瓦斯涌出量超限,制定了风巷高位钻场高位钻孔抽采采空区瓦斯、风巷埋管抽采上隅角及老塘瓦斯、机巷沿空掘巷抽采3213采空区瓦斯、顺层钻孔抽放本煤层瓦斯、风巷辅助高位边孔抽采采空区瓦斯等综采工作面瓦斯治理技术。实践结果表明,通过以上的瓦斯抽放方式,回风巷瓦斯体积分数完全可控制在0.5%以内。  相似文献   

9.
马宁世 《煤》2014,(4):64-65,71
魏家地煤矿东1102综放工作面开采煤层为特厚松软易燃煤层,受F1-2断层影响,瓦斯含量高,分析开采过程中其瓦斯运移规律,采用不同抽采方法、利用不同系统对区域内的瓦斯进行综合立体分源抽采,可从根本上解决回采过程中上隅角及其回风巷瓦斯超限的技术难题。  相似文献   

10.
煤层群开采工作面瓦斯涌出来源及比例的定量分析,是矿井瓦斯抽采设计与治理的重要前提。稳定碳氢同位素法基于瓦斯气体混合前后碳、氢同位素总量各自保持不变的原理,可以对工作面瓦斯各来源比例进行定量计算,成为工作面瓦斯精准定量溯源的有效方法。稳定碳氢同位素分析实现的必要条件是混合气样的瓦斯体积分数不低于10%,对此,首先提出煤层群开采工作面瓦斯精准定量溯源原理,并构建了高效分离低浓度瓦斯方法,研究了吸附柱中甲烷、氧气和氮气的分离规律,对比确定了优化的吸附剂种类和吸附柱尺寸,对上隅角、回风巷等地点的超低浓度瓦斯进行分离,进而进行稳定碳氢同位素测试。然后通过测得的各煤层端元气体以及工作面不同位置混合气体的甲烷碳、氢同位素值,利用二端元、三端元线性混合模型,定量分析了西山矿区东曲矿和屯兰矿的4个试验工作面各位置瓦斯来源的占比及规律。最终确定了近距离煤层群回采工作面瓦斯的重点抽采目标:工作面上隅角只有5%来自上邻近层,本煤层占比达到78%,因此应着力加大本煤层瓦斯抽采强度;采空区、上隅角、回风巷的瓦斯主要来源于本煤层卸压瓦斯,从采空区到上隅角和回风巷,上邻近层瓦斯占比呈现上升趋势;采空区、上隅角瓦斯各来源比例受工作面推进度影响较小,基本维持稳定。煤层群开采工作面瓦斯精准定量溯源技术实施简便,效果显著,有效解决了上隅角、回风巷等地点精准定量溯源的重大工程难题。  相似文献   

11.
为解决高瓦斯厚煤层低位综放工作面回采期间上隅角瓦斯管理困难的问题,根据工作面生产现状和瓦斯治理存在问题,在加强通风的前提下,研究改进上隅角埋管抽采、上隅角封闭抽采、回风巷顶板裂隙带抽采等新技术,取得了较好的瓦斯抽采效果,有效地控制了工作面回采期间瓦斯涌出,保证了安全生产。  相似文献   

12.
随着煤层开采深度的不断增加,煤层瓦斯含量增大,瓦斯成为煤矿主要灾害之一,突出煤层群瓦斯治理是地方煤矿的一大技术难题,炮采工作面上隅角瓦斯治理更是如此。以新寨矿井为例,通过分析上隅角瓦斯来源,提出了通过采煤工作面运输和回风巷道布置、本煤层抽放、邻近层抽放、采空区埋管抽放、减少采煤漏风和吹散上隅角瓦斯等方法,综合治理上隅角瓦斯超限聚积问题。实践证明,这些方法对治理地方煤矿煤层群开采工作面上隅角瓦斯效果显著。  相似文献   

13.
余吾矿属于高瓦斯矿井,回采工作面采用低位放顶煤一次采全高采煤法,工作面落煤时间集中,瓦斯绝对涌出量大,容易导致工作面瓦斯超限,严重影响安全生产。为解决这一难题,通过分析综放工作面采空区上覆岩层的岩性特征和瓦斯流动规律,合理调整工作面高抽巷的层位,在S2108工作面将高抽巷层位从原设计的距煤层顶板之上30 m处调整至距煤层顶板之上20 m处位置。结果表明,S2108工作面回采期间,回风流瓦斯浓度平均为0.4%,工作面回风流、后溜机尾、上隅角等均未发生瓦斯超限事故,工作面平均日产量是其它工作面的1.2倍。通过调整S2108工作面高抽巷的层位,提高了高抽巷的抽采效率,使S2108工作面回采期间回风流、上隅角的瓦斯得到了有效控制,确保了S2108综放工作面的安全高效生产。  相似文献   

14.
孙海峰  孙海林 《煤炭技术》2020,39(7):138-142
针对高瓦斯综放工作面回采工程中上隅角瓦斯超限问题,以华彬煤业蒋家河煤矿203工作面为研究背景,提出顶板走向外错高抽巷配合穿层钻孔抽采采空区瓦斯技术。通过理论计算和数值模拟结果,确定了高抽巷合理层位布置,根据现场抽采参数及效果分析,外错高抽巷配合穿层钻孔抽采稳定后,高抽巷穿层钻孔抽采瓦斯平均浓度为26%,上隅角瓦斯浓度平均值稳定到0.45%左右,回风巷口瓦斯浓度平均值稳定到0.42%,解决了该矿井上隅角及回风巷口瓦斯超限难题,确保了矿井的安全生产。同时,为类似条件综放工作面采空区瓦斯治理具有一定的理论指导意义和实用参考价值。  相似文献   

15.
随着煤炭开采深度的增加,煤层瓦斯含量越高、瓦斯压力越大,瓦斯含量高、压力大严重制约了采掘工作面的生产,瓦斯成为当今制约回采工作面生产的一大难题,笔者通过对汪家寨煤矿P41104工作面瓦斯涌出来源进行分析,并采取针对瓦斯来源的多种瓦斯治理手段,提高瓦斯抽采浓度及瓦斯抽采量,有效解决了P41104综放工作面上隅角及刮板输送机机尾瓦斯超限制约生产,其中瓦斯体积分数下降幅度高达50%,上隅角及刮板输送机机尾瓦斯体积分数始终保持0.7%~0.9%之间,回风瓦斯体积分数在0.4%~0.6%之间,减低了瓦斯涌出,确保了工作面的安全生产.  相似文献   

16.
匡帅  何俊等 《中国煤炭》2014,(3):106-110
针对余吾煤业屯留矿N2202综放工作面上隅角瓦斯经常超限的情况,分析了工作面上隅角瓦斯超限的原因,提出了回风巷裂隙带钻孔高效抽采、回风巷顶板插管等措施解决上隅角瓦斯超限问题。措施实施后效果明显,上隅角瓦斯超限次数大大减少,统计600次数据中,预警次数由297次直接下降到50次,产量大幅增加,工作面最高产量达到27900t/d,实现了工作面的安全高产高效开采。  相似文献   

17.
通过分析研究,在亭南煤矿205工作面初采阶段采取调整末段高抽巷的层位、增加高位钻孔贯通高抽巷、加大卸压区煤层瓦斯抽放量及加大隅角抽放能力等瓦斯治理措施,有效地解决了205工作面初采阶段回风隅角瓦斯浓度超限问题,为大采高工作面初采阶段瓦斯治理积累了实践经验。  相似文献   

18.
为了解决综采工作面采空区瓦斯向回采空间和回风隅角涌出而造成的局部瓦斯积聚和超限问题,沿煤层顶板裂隙发育带施工走向高位抽采巷,对采空区瓦斯进行抽采。通过对走向高位抽采巷抽采采空区瓦斯效果和对回风流、回风隅角瓦斯浓度的影响分析,得出走向高位抽采巷末端进入采空区40 m左右时,抽采效果达到峰值,并基本稳定,解决了综采工作面生产期间回风流、回风隅角瓦斯治理难题,杜绝了瓦斯超限事故。  相似文献   

19.
针对工作面瓦斯涌出量大、上隅角瓦斯浓度高的难题,在对采空区覆岩移动规律及瓦斯运移规律分析的基础上,通过理论计算、数值模拟和现场应用,对高抽巷与煤层顶板不同高度、与回风巷不同平距条件下,抽放瓦斯效果进行研究,结果表明:与煤层顶板高度取20 m、与回风巷平距取14 m时为高抽巷合理布置位置;现场抽放过程中瓦斯抽放率均在38.1%以上,瓦斯体积分数最高可达40.6%,平均为35.0%。研究结果稳定、可靠,能有效解决工作面及上隅角瓦斯超限问题,可为类似工程问题提供参考。  相似文献   

20.
崔永乐 《中国矿业》2023,(1):100-106
针对极近距离煤层群开采过程中,覆岩裂隙发育、瓦斯运移复杂、回风隅角瓦斯易超限等问题,本文以某煤矿EIN56-5综放工作面回风隅角瓦斯超限案例为研究背景,采用理论分析、数值模拟及现场实践的方法,分析了瓦斯超限影响因素,模拟分析了工作面覆岩破坏过程及应力分布,提出了“分阶段、差异化”的瓦斯治理思路,并在EIN56-5综放工作面实践应用。研究结果表明:EIN56-5工作面回风隅角瓦斯超限是由上覆坚硬顶板、瓦斯抽采措施不合理等多种因素耦合造成的;工作面垮落带最大高度为8.95 m,裂隙带最大高度为20.33 m;工作面后方自燃三带范围分别为:0~25 m为散热带、25~70 m为升温氧化带、70 m以内为窒息带;通过合理的瓦斯抽采措施实施,瓦斯抽采率达到77%,回风隅角及回风巷未发生瓦斯超限,进而确保了工作面的安全回采。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号