首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
采用预填镍基合金粉的方法,分别采用一种钴基钎料和一种镍基钎料对K465镍基铸造高温合金进行了大间隙钎焊试验。结果表明,这两种钎料均能实现K465合金的大间隙钎焊。钴基钎料钎焊接头微观组织主要包括镍基合金粉颗粒、粉颗粒间Ni-Co基固溶体以及固溶体上分布着的灰色块状相M23(C,B)6和白色块状相M3B2。镍基钎料钎焊接头微观组织包括镍基合金粉颗粒、粉颗粒间Ni-Cr基固溶体以及分布在颗粒上和颗粒间的白色物相M3B2。钴基钎料钎焊接头900℃平均抗拉强度520 MPa,高于镍基钎料钎焊接头的488 MPa,两者均超过了母材强度的50%。  相似文献   

2.
韩明  康慧  曲平 《焊接技术》2005,34(2):43-45,i002
使用同等成分的Ti-Zr-Cu-Ni晶态钎料和非晶态钎料进行TiAl合金真空钎焊,研究了钎料的不同制备状态对TiAl合金钎焊接头显微结构的影响。通过对比分析得出。2种钎焊接头区域都可分为α-Ti相区、α2-Ti3Al相区、不规则析出区、富Cu,Ni相区、残余钎料区;非晶态钎焊接头的富Cu,Ni相区的相组织为(Ni,Cu)3 Ti固溶体,残余钎料区的相组织为(CuTi),(NiTi3)固溶体,而晶态钎焊接头对应区域的相组织为(Ni,Cu)Ti和α-Ti固溶体。  相似文献   

3.
采用四号锰基钎料真空钎焊2Cr13不锈钢,研究了钎焊温度对其接头组织和室温及高温剪切强度的影响,并与Ni-Cr-P钎料钎焊不锈钢接头进行了对比.结果表明:四号锰基钎料钎焊接头组织由Mn-Ni基的单相Mn-Ni-Cu-Fe-Cr-Co固溶体组成,接头室温剪切强度随着钎焊温度的升高逐渐增加;Ni-Cr-P钎料钎焊接头组织由Ni-Fe基固溶体和Ni(Cr,Fe)-P化合物组成,接头室温剪切强度低于四号锰基钎料钎焊接头的室温剪切强度.当测试温度超过500℃时,Ni-Cr-P钎料钎焊接头的高温剪切强度降低幅度不大,四号锰基钎料钎焊接头降低明显,但仍高于Ni-Cr-P钎料钎焊接头的高温剪切强度.  相似文献   

4.
本文采用CuMnNiCrSi钎料实现了对Ti(C,N)基金属陶瓷与低碳钢的真空钎焊连接。研究了钎焊温度和保温时间对钎焊接头剪切强度的影响,通过XRD、SEM和EDS对接头的物相、显微组织、元素分布及断口形貌进行分析。研究表明:在钎焊温度为1030℃,保温时间为20 min的工艺条件下,钎焊接头的结合强度达到最大,其剪切强度为301.5 MPa。Ti(C,N)基金属陶瓷/低碳钢焊缝由α-Ti基固溶体和Cr基固溶体构成。在金属陶瓷一侧的界面处形成Cu基固溶体,在钢一侧形成(Cu,Ni)固溶体和(Fe,Ni)固溶体。Ti(C,N)基金属陶瓷/低碳钢接头断裂发生在Cu基钎料处,其断裂方式为韧性断裂。  相似文献   

5.
采用Ni-Cr-P-Cu钎料对316L不锈钢进行真空钎焊连接,分析了不同钎焊温度(930~980℃)和保温时间(5~30 min)对接头组织及抗剪强度的影响。结果表明,不锈钢与钎料的界面组织为镍基固溶体(固溶原子为Cu,Fe和Cr),而钎缝中心的组织为镍基固溶体-Cr Ni P共晶相以及Ni3P-镍基固溶体共晶相,其中共晶相中的镍基固溶体属于韧性相,弥散分布于钎缝中。升高钎焊温度或延长保温时间都会增加不锈钢和钎料界面的镍基固溶体的厚度,同时会增加钎缝中心韧性相的数量。当钎焊温度为980℃,保温时间30min时,接头的抗剪强度最大,为95 MPa。  相似文献   

6.
Fe3Al/18-8扩散焊接头的组织特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用扫描电镜,X射线衍射仪和透射电镜分析了Fe3Al/18-8扩散焊接头的显微组织特征。结果表明,加热温度1040℃、保温时间60min、焊接压力15MPa时获得的Fe3Al/18-8扩散焊接头抗剪强度达226MPa。接头处形成具有三个扩散反应层的过渡区,其相结构依次由(FeAl Fe3Al)、Ni3Al相和α-Fe(Al)固溶体组成。显微硬度峰值为610HM,不存在FeAl2(820HM)、Fe2Al5(990HM)和FeAl3(1030HM)等脆性相,有利于保证Fe3Al/18-8扩散焊接头的组织性能。  相似文献   

7.
对陶瓷表面先进行金属化处理,再使用常规钎料钎焊陶瓷与金属,利用无氧铜环作为过渡层来缓解钎焊过程中产生的残余应力,可获得无焊接缺陷、气密性良好的电气贯穿件馈通线。SEM和EDS分析结果表明,无氧铜棒与无氧铜环钎焊接头主要由灰色的Cu基固溶体、白色的Ag基固溶体及Ag-Cu共晶组织组成。陶瓷与无氧铜环钎焊接头、陶瓷与可伐合金钎焊接头主要由Cu基固溶体、Ag-Cu共晶组织、Cu-Ni固溶体组成。  相似文献   

8.
AA4343/AA3003铝合金薄板钎焊接头的显微组织特征   总被引:3,自引:0,他引:3  
采用气氛保护钎焊工艺 ,对AA434 3/AA30 0 3铝合金复合板材料的钎焊接头组织特征 ,及其与焊接工艺的关系和对接头区显微硬度的影响进行了研究。实验结果表明 ,钎焊过渡区由单相α(Al)固溶体层和Si扩散层组成 ,它们的厚度随钎焊条件而发生变化。远离焊接区有一个α(Al)固溶体残余层 ,它的厚度保持 2 0 μm基本不变 ,与焊接参数和材料性质无关。讨论了钎焊接头特征组织的形成机理  相似文献   

9.
采用双熔池TIG熔钎焊方法,对不锈钢与铝合金焊接接头进行了试验制备,研究了Nocolok复合钎剂中添加Cu时,熔钎焊接头界面组织及力学性能的变化。研究发现,采用含Cu的复合钎剂,熔钎焊层致密性提高,与基体界面结合良好,熔钎焊层的组织形态得到改善;熔钎焊层所形成的金属间化合物中,靠近不锈钢侧由原来的Fe_2Al_5相转变为含Cu的α-Fe相,在铝合金侧则由原来的絮状FeAl_3~+Al共晶相转变为锯齿状的Fe_4Al_(13)相,该结构相中的部分Fe原子被Cu原子取代,形成(Fe,Cu)_4Al_(13)。力学性能测试表明,随着复合钎剂中Cu含量增加,熔钎焊接头的剪切强度先增后降;与纯复合钎剂相比,接头剪切强度明显提高,以Cu含量为15wt%时熔钎焊接头的强度最高。  相似文献   

10.
金莹  刘红亮  魏鑫  闵慧娜  王丹  邰清安  郑磊 《焊接》2023,(10):18-22+30
采用BNi-2镍基钎料对GH4738和GH3536异种高温合金在1 040℃×10 min条件下进行真空钎焊,通过扫描电子显微镜和能谱仪分析了钎焊接头的微观组织及物相组成,并测试了钎焊接头的高温强度。结果表明,钎缝与母材界面结合良好,且钎缝组织致密。在钎焊接头观察到3个特征组织区域,分别为元素扩散区、等温凝固区和非等温凝固区。等温凝固区由镍基固溶体组成,而非等温凝固区除了镍基固溶体外,还存在大量的Ni3Si相及少量的富含Cr,Mo的硼化物。在730℃高温条件下,钎焊接头抗拉强度为259 MPa。在拉伸过程中,钎焊接头沿非等温凝固区开裂,而Ni3Si及硼化物等脆性相内部形成的微裂纹促进了钎焊接头的断裂。  相似文献   

11.
金莹  刘红亮  魏鑫  闵慧娜  王丹  邰清安  郑磊 《焊接》2023,198(10):18-22, 30

采用BNi-2镍基钎料对GH4738和GH3536异种高温合金在1 040 ℃ × 10 min条件下进行真空钎焊,通过扫描电子显微镜和能谱仪分析了钎焊接头的微观组织及物相组成,并测试了钎焊接头的高温强度。结果表明,钎缝与母材界面结合良好,且钎缝组织致密。在钎焊接头观察到3个特征组织区域,分别为元素扩散区、等温凝固区和非等温凝固区。等温凝固区由镍基固溶体组成,而非等温凝固区除了镍基固溶体外,还存在大量的Ni3Si相及少量的富含Cr,Mo的硼化物。在730 ℃高温条件下,钎焊接头抗拉强度为259 MPa。在拉伸过程中,钎焊接头沿非等温凝固区开裂,而Ni3Si及硼化物等脆性相内部形成的微裂纹促进了钎焊接头的断裂。

  相似文献   

12.
用Cu-Ti活性钎料对Al2O3陶瓷/碳钢实施钎焊,用透射电镜、扫描电镜、能谱仪和X射线衍射仪对界面微观结构进行表征,研究了钎焊温度1050℃、不同保温时间(10~40 min)对接头界面微观结构和剪切强度的影响。结果表明,保温30 min得到的钎焊接头具有较好的界面组织形态和较高的剪切强度。在此工艺条件下界面结合区有3层组成,即近陶瓷侧以Ti4Fe2O为主的反应层,近钢侧以Ti Fe2为主要析出相的扩散层,在反应层和扩散层之间为Cu固溶体+Ti4Fe2O相,各层组织比较致密,微孔缺陷较少,接头剪切强度达到99 MPa。  相似文献   

13.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

14.
王志  刘飞  刘黎明 《焊接学报》2012,(10):79-82
采用Sn-30Zn(质量分数,%)钎料对Mg/Al异种金属进行低温钎焊.并利用扫描电子显微镜、电子探针研究了钎焊接头在不同焊接工艺参数下的微观组织演变过程,同时采用维氏硬度仪及万能力学性能试验机对接头的显微硬度和力学性能进行了测试.结果表明,当钎焊温度为330℃,保温时间为5 s时,钎焊接头组织性能较好.接头组织主要分为近镁侧的Mg2Sn化合物层、近铝侧的Al-Sn-Zn固溶体层、焊缝中心三个区.焊缝中心区以Sn-Zn的过共晶组织为基底,上面弥散分布着Mg2Sn相,铝基固溶体相.接头的最佳平均剪切强度为60.47 MPa.  相似文献   

15.
采用TiZrCuNi钎料对Al0.5CoCrFeNi高熵合金进行钎焊连接后对其进行退火处理,研究了800 ℃下不同退火时间对钎焊接头微观组织和力学性能的影响。通过扫描电镜(SEM)、能谱仪(EDS)分析了钎焊接头微观组织及相组成,利用万能试验机测定了热处理前后试样的剪切性能。结果表明,钎焊接头的典型微观组织分为焊缝区、熔合区和热影响区3部分,焊缝区的组织主要为高熵合金相和BCC结构的FeCr基固溶体;随着退火保温时间的延长,钎焊接头焊缝区灰色相中逐步析出细小的黑色相,对接头起到了一定的弥散强化作用,微观组织更为均匀细小,钎焊接头的剪切强度由未经退火处理的554.8 MPa增加到退火12 h后的581.1 MPa。  相似文献   

16.
采用Al含量为2%~22%(质量分数)的ZnAl钎料,配合改进型CsF-AlF3钎剂,研究ZnAl钎料在3003铝合金板材上的铺展性能及钎焊接头的力学性能与显微组织。结果表明,当Al含量低于8%时,3003铝合金的火焰钎焊接头成形良好,且抗拉强度较高。钎缝显微组织为Al基固溶体及Zn基固溶体。由于固溶强化作用,钎缝的显微硬度比母材的高。钎缝界面由三部分组成,母材、扩散区和界面区,但影响接头强度的主要因素为钎缝内固溶体的分布情况,而不是扩散区的宽度。  相似文献   

17.
针对因界面形成脆性金属间化合物IMC而导致钢/铝钎焊接头力学性能差的问题,进行了Q235表面电刷镀镍预处理、及随后采用Al-12.6Si-15Cu-2Ni钎料的Q235/1060炉中钎焊试验研究。结果表明,适当厚度的电刷镀镍层能够有效提高钢/铝钎焊接头的强度和韧性,电刷镀时间15 min试件的钎焊接头具有最大的剪切强度(≈95 MPa),比未电刷镀试件(≈56 MPa)提高近70%;剪切断口中韧性断裂面积约占40%,比未电刷镀试件(≈10%)增加了4倍。电刷镀镍钢/铝钎焊接头中外侧IMC(Fe2Al5相)层的厚度变薄,内侧IMC(Fe Al3相)的形态由羽毛状边缘变成较为平直光滑的边缘。钢表面电刷镀镍对钎焊过程中液固界面反应的抑制和调制作用是其提高钢/铝钎焊接头力学性能的主要原因。  相似文献   

18.
采用BNi-2镍基钎料对不锈钢单边薄板(厚度小于0.4 mm)真空钎焊,运用金相分析方法对钎焊接头的微观组织特征进行了研究。试验表明:在真空钎焊过程中,钎料和母材中元素扩散显著;钎缝组织由两部分组成:一部分是接近母材钎缝区一侧的固溶体组织,另一部分是位于中部的化合物相组织。不锈钢单边薄板的焊接接头组织均匀,钎料与母材之间得到了良好的冶金结合,从而得到满足要求的焊接接头。  相似文献   

19.
铬青铜与双相不锈钢电子束熔钎焊接头形成机制   总被引:5,自引:1,他引:4  
采用光学金相、能谱分析及电子探针元素分析方法对QCr0.8/1Cr21Ni5Ti电子束熔钎焊接接头的组织结构进行了研究。研究结果表明,铬青铜与双相不锈钢电子束熔钎焊接头的焊缝组织为宏观均匀的Fe在Cu中的过饱和固溶体相,熔钎界面上部形成了与焊缝及钢侧母材连结良好的一薄的α ε相熔合过渡层,下部为钎合面。给出了铜钢异种材料电子束熔钎接头形成的结构和热作用条件,并基于组织结构分析和电子束焊接的特点,建立了QCr0.8/1Cr21Ni5Ti电子束熔钎焊接接头形成的物理模型,探讨了其形成机制。分析认为,QCr0.8/1Cr21Ni5Ti电子束熔钎焊接头组织结构的形成是由匙孔形熔池形成阶段、熔合过渡层形成阶段、钎缝形成阶段及最终组织形成阶段组成。  相似文献   

20.
采用金相显微镜、扫描电镜和电子探针,观察了Al2O3-TiC复合陶瓷与Cr18-Ni8不锈钢扩散钎焊接头的组织形貌,分析了元素在接头中的分布情况和界面附近区域元素的扩散情况.试验结果表明,Ti-Cu-Ti中间层与陶瓷具有良好的反应能力,促进元素的相互扩散.Al2O3-TiC复合陶瓷与不锈钢扩散钎焊接头形成3个扩散反应层,其中一个位于Cr18-Ni8不锈钢侧,厚度约为17.5 μm,成分主要是Fe在β-Ti中的固溶体,Fe-Ti化合物和TiC;靠近陶瓷侧的反应层厚度约为7.5 μm,成分主要是TiC,Ti-O和Ti-Al;中间反应层厚度约为5μm,成分主要是Cu固溶体和Cu-Ti相.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号