共查询到20条相似文献,搜索用时 15 毫秒
1.
《仪器仪表与分析监测》2020,(3)
设计了一种基于图像配准技术的晶圆表面缺陷自动检测系统,满足目前对晶圆生产中良率的需求。通过SURF (Speeded Up Robust Features)图像配准算法实现待测晶圆图像和标准晶圆图像的空间位置上的匹配。同时对晶圆表面常见的缺陷类型进行分析和研究,采用缺陷轮廓特征提取的方法进行缺陷分类,并对缺陷类型进行相应的标记,实现晶圆表面缺陷的自动检测和识别。 相似文献
2.
3.
4.
运用神经网络处理非线性问题的优势,将其应用于带钢表面缺陷的识别与分类研究。本文采用灰度共生矩阵的特征提取,提出了基于BP神经网络进行缺陷识别与分类的方法,编制了带钢表面缺陷的识别与分类软件。分类测试表明,该软件有较好的识别与分类效果。 相似文献
5.
带钢表面缺陷识别对促进带钢生产质量提升至关重要。然而传统的图像处理与识别方法存在精度不高、且容易受到光线等因素影响;而新兴的基于深度学习的算法,则存在模型参数量大且难以部署等问题,无法在实际生产中得到广泛应用。本文提出了一种轻量级部分深度混合可分离网络(PDMSNet)用于解决以上问题,由于其模型小以及浮点型运算(FLOPs)少更易于部署在资源受限的平台。采用标准的带钢表面缺陷数据集NEU-CLS的测试结果表明,与其他缺陷分类器相比,在带钢表面缺陷检测方面,本文所提出的模型性能更加优越。识别准确率达到了99.78%,而参数量只有0.17 M以及272 M FLOPs,在单一低端的GeForce MX250图形处理单元(GPU)识别一张图片平均时间为0.47 ms,可以满足工业现场实时检测的要求。 相似文献
6.
7.
8.
9.
10.
11.
在铝型材实际生产过程中,由于碰撞、加工温度、压力等原因,可能导致铝型材产生擦花、脏点、喷流等数种表面缺陷,缺陷目标较小,长宽大,传统目标检测算法的准确率较低,严重影响铝型材的美观和质量.在Faster R-CNN网络的基础上,引入了多阶段模型训练方法使部分无缺陷样本生成对抗样本,用ResNeXt105网络代替原始VGG16网络提取图像特征,设计了Cascade Faster R-CNN的网络结构,采用FPN提取多尺度特征图并进行特征图融合.实验结果表明,在2722张图像测试集上,Faster R-CNN模型准确率为62.7%,网络模型测试准确率达到81.4%,提高了18.7%.故相比于其他网络模型,改进后的Cascade Faster R-CNN的模型具有更强的特征提取能力和泛化能力,为类似小目标检测提高了技术参考. 相似文献
13.
14.
15.
16.
针对现表面缺陷检测方法准确率低、需要进行复杂的特征设计、特征泛化性不强、参数多和识别速度慢等问题,在残差网络卷积模块之后采用自适应全局平均池化,有效降低了分类器的特征维度,减少了信息冗余。将无参注意力机制模块SimAM与ResNet34网络相结合用于缺陷检测,并对不同组合结构进行研究,提出ResNet34_s_e和ResNet34_m这2种混合网络模型,该2种混合网络模型均不增加原始网络参数量。在东北大学钢铁缺陷标准数据集上进行实验,对数据集使用镜像、翻转等数据增广策略,防止模型过拟合。通过对比发现,ResNet34_s_e混合网络模型能够有效加快训练过程中误差的下降趋势,提升分类准确率。最后在武汉某制造车间采集的冲压件缺陷数据集上验证该混合网络模型的泛化性能。测试集正确率由88.34%提高到了89.19%,有效提升了车间冲压件缺陷检测准确率。 相似文献
17.
微型钢球由于高反射、球体需要全覆盖的特点,其表面缺陷的质量控制尤为困难。针对人工检测方法效率低且准确度不足的问题,文章提出一种改进的AlexNet的卷积神经网络和SVM模型的钢球表面缺陷快速识别方法。该模型删减了后3个卷积层,保留全连接层FC7提取的特征,采用SVM代替原始Softmax分类器以防止过拟合,提高模型泛化能力。此外,研究了基于K-CV的改进网络搜索算法确定分类器最佳参数。实验采用混淆矩阵对提出模型的识别结果进行性能评估,结果表明,该方法平均准确率达到99.43%,运算时间为17.2 ms。对比原模型及其他网络模型,具有较高的准确度和推理速度,能够满足工业现场检测的需求。 相似文献
18.
本文利用马氏距离构造了一种基于统计学习的板带箔表面缺陷检测的新方法。该方法利用与待检测的板带箔相关的正常表面图像的先验信息建立一个剩余图像的统计模型,构造一个表面缺陷判别函数,通过设置一个适当的阈值,检测出缺陷区域。实验结果显示了该方法对各类缺陷检测的适用性和有效性。最后我们将其与最佳阈值分割进行对比,并分析了该方法在复杂光照环境下有相对比较好检测结果的原因。 相似文献
19.