首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 142 毫秒
1.
董军伦  孙军强 《激光技术》2008,32(2):210-210
为了研究能够在室温下实现稳定多波长输出的掺铒光纤激光器,采用了在激光谐振腔中引入正弦相位调制和偏振烧孔来抑制腔中模式竞争的方法。在线形谐振腔中,利用半导体光波导作为一个反射腔镜,并用正弦信号对其进行驱动。这样,半导体光波导可以等效成两个器件:一个对光信号产生移频反馈效果的正弦相位调制器,和一个诱使掺铒光纤中产生偏振烧孔的非线性相位延时器。通过实验,得到了10波长输出的稳定光谱。相邻波长间隔为0.32nm,功率谱比较平坦,起伏小于3dB。结果表明,相位调制和偏振烧孔的共同作用,可以有效的抑制由于掺铒光纤的均匀展宽效应引起的模式竞争。  相似文献   

2.
正弦相位调制下多波长掺铒光纤激光器的研究   总被引:3,自引:0,他引:3  
通过理论分析并实验验证了一种能在室温下实现稳定的掺铒光纤激光器(EDF)多波长输出的方法。通过在线形谐振腔中引入正弦相位调制器。抑制了由于掺铒光纤的均匀展宽效应引起的模式竞争,从而避免了在室温情况下不稳定的单波长激射。与此同时,线形谐振腔引起的空间烧孔效应也有利于抑制均匀展宽效应。通过取样光纤光栅(SBG)的选频作用,实验中观察到稳定的5个波长的同时激射,相邻波长间隔为0.8nm,符合ITU标准。  相似文献   

3.
基于保偏光纤光栅的对称腔多波长掺铒光纤激光器   总被引:2,自引:0,他引:2  
提出一种基于保偏光纤布拉格光栅(PMFBG)的对称腔多波长掺铒光纤激光器(EDFL).使用直接在保偏光敏光纤(PMPF)上写入的光纤布拉格光栅作为波长选择器件,利用激光谐振腔中的偏振烧孔效应(PHB),通过调整偏振控制器(PC),在室温下得到稳定的四波长激光运转.输出激光的边模抑制比(SMSR)达到50 dB,约一个半小时重复扫描时间内对应于每一波长的振幅变化差异均小于0.8 dB.  相似文献   

4.
研究了一种全光纤可切换多波长掺铒光纤激光器。该激光器利用一段缠绕在压电陶瓷上的单模光纤作为正弦相位调制器以及基于光纤拉锥的马赫-曾德尔干涉仪作为梳状滤波器,抑制由于掺铒光纤的均匀展宽效应引起的模式竞争,从而避免了在室温下不稳定的单波长激射,实现了多波长掺铒光纤激光器的稳定输出。实验中观察到稳定的5个波长的同时激射,相邻波长间隔为0.804 nm。信噪比大于40 dB,3 dB带宽约为0.023 nm,中心5个波长输出功率的平坦度为14 dB。同时,激光器具有灵活的波长可切换特性,通过调整驱动信号和偏振控制器的状态,实现了单波长、双波长、三波长以及更多波长的输出。该激光器可应用于大容量波分复用系统和光纤传感。  相似文献   

5.
窄线宽多波长掺铒光纤激光器   总被引:5,自引:1,他引:4  
在掺铒光纤线型的单模光纤腔中接续一段多模光纤 ,依靠多模光纤中导模的空间模式跳动与激光谐振腔中的偏振烧孔共同作用 ,实现了窄线宽多波长的同时激射。激射波长的 3d B线宽约为 0 .0 9nm ,波长间隔为 0 .6 8nm。  相似文献   

6.
利用直接写在掺铒光纤上的一对光栅提供光反馈构成谐振腔,研制出了DBR光纤激光器;采用偏振控制器调节输出光的偏振态,分别观察到了与2个光栅Bragg波长对应的单频激光输出.泵浦功率68.8mW时得到了4.3mW的激光输出.对其调制特性进行了研究.  相似文献   

7.
为给密集波分复用(DWDM)光纤通信及光纤传感系统提供理想光源,设计了一种双波长环形腔掺铒光纤激光器。该激光器采用单支光纤光栅(FBG)和2个3dB耦合器构成可调谐光滤波器,结合多模光纤的偏振烧孔效应,通过改变系统的偏振态来获得波长可调谐的双波长激光输出。实验结果表明:改变系统的偏振态时,可分别获得单波长和双波长激光输出,双波长光纤激光器的最大波长差为4.692nm。引入多模光纤后,激光跳模现象得到明显抑制。  相似文献   

8.
提出并实现了一种基于扭绞保偏光纤光栅的单纵模单偏振掺铒光纤激光器。光纤激光器的线型激光谐振腔由两个均匀保偏光纤光栅构成并作为激射波长和纵模模式选择器件,均匀保偏光纤光栅采用248 nm KrF准分子激光直接刻写在不需要氢载的自制保偏光敏掺铒光纤上。利用保偏光纤光栅引起的偏振依赖损耗效应,通过对光纤激光器谐振腔进行适当扭绞,成功实现了稳定输出的单纵模单偏振掺铒光纤激光器。  相似文献   

9.
偏振控制C波段波长可调谐掺铒光纤激光器   总被引:1,自引:1,他引:1  
贺虎成  杨玲珍  王云才 《中国激光》2006,33(12):597-1600
报道了一种结构简单的波长可调谐掺铒光纤激光器。该光纤激光器由增益平坦型掺铒光纤放大器(EDFA)、偏振相关光隔离器、光纤偏振控制器及输出耦合器组成。利用光纤偏振控制器和偏振相关光隔离器作为波长调谐器件,实现了光纤激光器的波长可调谐输出及双波长输出。利用琼斯矩阵理论分析了光纤激光器腔内不同波长的损耗与偏振控制器状态的关系,指出通过调节光纤偏振控制器,光纤激光器可以实现波长可调谐输出,同时阐述了光纤激光器双波长输出的机制。实验上获得了中心波长在1542~1564nm连续可调,平均功率大于2.6mW,边模抑制比大于35dB的连续激光输出。同时获得了波长为1549nm和1564nm的双波长连续激光输出。  相似文献   

10.
基于增益均衡技术,提出了一种结构简单的双波长光纤激光器。激光器采用线形腔结构,以一对双波长掺铒光纤重叠光栅为波长选择器件,掺铒光纤为增益介质。实验结果表明,通过精细调节输出端双波长掺铒光纤重叠光栅两端的机械应力,能够调整出射端腔镜在λ1和λ2处的反射率(或透射率),即调整激光器的损耗,使谐振腔内双波长处各自的损耗和增益相匹配,有效抑制腔内模式竞争,实现了波长间隔为0.932 nm的稳定双波长激光同时激射。该激光器阈值功率为4 m W,输出激光的3 d B带宽约为0.02 nm,30 d B带宽小于0.2 nm,边模抑制比可达51.96 d B。激光器具有结构简单、室温下输出稳定、线宽窄、阈值低等优点。  相似文献   

11.
A novel room-temperature multiwavelength erbium-doped fiber (EDF) laser is demonstrated. Stable multiwavelength lasing at room temperature is realized by incorporating a semiconductor optical amplifier (SOA)-based phase modulator in the laser cavity. The SOA is biased below the transparent point with a sinusoidal signal applied to achieve phase modulation, to suppress the homogenous line broadening of the EDF. Stable multiwavelength lasing with wavelengths up to 26 and wavelength spacing as small as 0.19 nm is demonstrated at room temperature.  相似文献   

12.
波长间隔可调谐多波长光纤光学参量振荡器   总被引:1,自引:1,他引:0  
提出并实现了一种以高非线性色散位移光纤为增益介质,以光栅对形成谐振腔,简单线形结构的连续光抽运的波长间隔可调谐多波长光纤光学参量振荡器(MW-FOPO)。采用波长可调谐的窄线宽激光器作为抽运种子光源,以伪随机相位调制抽运光来抑制高非线性光纤中的受激布里渊(SBS)散射效应,结合高功率掺铒光纤放大器构成光纤光学参量振荡器的大功率抽运,通过四波混频(FWM)效应获得了室温下稳定的多波长激光输出。MW-FOPO的波长间隔可以通过调节抽运波长进行调谐。在1505~1615 nm光谱范围内,获得了17条消光比大于10 dB的多波长谱线。实验证明了MW-FOPO实现多波长激光光源的优异特性。  相似文献   

13.
为了获得具有超窄波长间隔的稳定多波长输出,设 计并实验验证了一种基于非线性偏振旋转(NPR)效应及NOLM的多波长SOA光纤激光器。利用 SOA的NPR效应,将SOA与其他偏振器件组合引起强度相关损耗(IDL)效应,从而抑制SOA均 匀加宽线宽内的模式竞争,实现稳定的多波长输出。Lyot-sagnac滤波器作为波长选择器件 ,选用71 m长保偏光纤(PMF)得到超窄波长间隔。另外NOLM作为功率 均衡器进一步抑制了模式竞争效应并且实现了功率均衡,提高了边模抑制比(SMSR)。通过调 节偏振控制器(PCs),最终在室温下实现了稳定且功率均衡的多波长输出,10 dB带宽内输出的波长数量为184,波长间隔为0.08 nm,SMSR高达22 dB。该激光器可作为DWDM光通信系统 中的光源。  相似文献   

14.
A simplified ring cavity for achieving a unidirectional room temperature multi-wavelength erbium-doped fiber ring laser without optical isolator is demonstrated. The fiber ring cavity is built in such a way that the optical fields propagating in two directions suffer different losses caused by one sampled fiber Bragg grating. Furthermore, simultaneous multi-wavelength lasing with 0.8-nm intervals is demonstrated with sinusoidal phase modulation just before the sampled fiber Bragg grating to prevent single-wavelength lasing and unstable wavelength oscillation.  相似文献   

15.
基于保偏光纤光栅的双波长掺铒光纤激光器   总被引:5,自引:6,他引:5  
提出了一种基于保偏光纤(PMF)中布拉格光栅的波长间隔可调的可开关双波长掺铒光纤激光器(EDFL)。由于和光纤布拉格光栅(FBG)两个反射峰对应的不同波长的两纵模在偏振态上是止交的.从而在均匀展宽的掺铒光纤中增强了偏振烧孔(PHB)效应。这种偏振烧孔效应大大减小了不同模式之间的竞争,因此可在室温下得到稳定的双波长振荡。另一方面。通过调整偏振控制器的状态.即改变腔内的双折射状念,光纤光栅的两个反射峰强度会发生变化。基于以上原理。便形成了对激光振荡模式的选择.即通过调整偏振控制器的状态可使激光器工作在稳定的双波长状态或在两波长之间转换。通过改变加在光纤光栅上侧向应力的大小和方向.可有效控制双波长激射的波长间隔.实验中得到了0.2~1.1nm的可调间隔。  相似文献   

16.
A narrow-linewidth, tunable, dual-wavelength fiber laser operating at room temperature with each lasing wavelength in single-longitudinal-mode operation is demonstrated. A commercially available tunable fiber Bragg grating was used to tune one of the lasing lines. An unpumped elliptical-core erbium-doped fiber was used as a saturable absorber to suppress mode hopping. Wavelength switching was achieved using a polarization controller. The linewidth (FWHM, full width at half maximum) of the laser line was 6.7 MHz and the OSNR (optical signal to noise ratio) was more than 40 dB.  相似文献   

17.
A nonlinear optical loop mirror (NOLM)-based linear cavity switchable multi-wavelength erbium-doped fiber (EDF) laser is proposed and experimentally demonstrated. Due to the characteristics of the intensity-dependent transmissivity, the NOLM can effectively mitigate the mode competition of the homogenous broadening gain medium, so that the multi-wavelength lasing can be achieved at room temperature. By adjusting the states of the polarization controllers (PCs), the number of the lasing wavelengths in the proposed laser can be adjusted flexibly from 11 to 13 with a wavelength spacing of 0.4 nm around the wavelength of 1 530 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号