首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.  相似文献   

3.
BACKGROUND: With the progression of acquired immunodeficiency virus (AIDS) and human immunodeficiency virus (HIV) infection to endemic areas of cysticercosis, the simultaneous diagnosis of both diseases is an expected event. METHODS: Among 91 patients with AIDS or HIV infection studied from 1987 to 1993 at a neurologic reference center in Mexico City, 2 patients with AIDS and neurocysticercosis were found. Five previously reported cases were jointly reviewed. RESULTS: The first patient presented with increased intracranial pressure of rapid progression. A single giant cyst was surgically excised and cysticercus was confirmed on histopathologic examination. The second patient had brain toxoplasmosis and concurrent neurocysticercosis as an incidental finding. CONCLUSIONS: Neurocysticercosis in HIV infection/AIDS may appear as a life-threatening condition or as an incidental finding. All reported cases have been found in advanced stages of HIV infection. Management must be individualized depending on the clinical form of cysticercosis, stage of HIV infection, and coexisting opportunistic conditions. Surgery may be lifesaving and some patients apparently responded to cysticidal drugs.  相似文献   

4.
5.
Three respiratory-deficient mutants of cytochrome oxidase subunit I in the yeast mitochondrion have been sequenced. They are located in, or near, transmembrane segment VI, the catalytic core of the enzyme. Respiratory-competent revertants have been selected and studied. The mutant V244M was found to revert at the same site in valine (wild-type), isoleucine or threonine. The revertants of the mutant G251R were of three types: glycine (wild-type), serine and threonine at position 251. A search for second-site mutations was carried out but none were found. Among 60 revertants tested, the mutant K265M was found to revert only to the wild-type allele.  相似文献   

6.
7.
Eighteen mutants resistant to 5',5',5'-trifluoroleucine (TFL), a leucine analog, were isolated in Saccharomyces cerevisiae strains YNN281 and YNN282. The mutants were characterized genetically and clustered in two groups, one comprising all the dominant (TFL1) and the other one all the recessive (tfl2) mutations. Genetic and biochemical data suggested that the dominant mutations are located on the LEU4 gene, coding for alpha-isopropylmalate synthase I. These mutations resulted in accumulation of leucine as a consequence of the synthesis of an enzyme insensitive to the feedback inhibition by leucine. Leucine excretion in the TFL1 mutants appeared to be affected by the genetic background of the strain and was greatly influenced by lysine metabolism. The measurement of intra- and extracellular amino acid concentrations in prototrophic strains carrying TFL1 or tfl2 genes showed that both were leucine overproducers. Some of the TFL-resistant mutants were tested in alcoholic fermentation of grape must: analysis of the fermentation secondary metabolites showed that the major effect of the TFL-resistant strains was an increased production of isoamyl alcohol compared to that of the parental strain.  相似文献   

8.
We describe the isolation and partial characterization of Saccharomyces cerevisiae nonconditional mutants that show defects in N-glycosylation of proteins. The selection method is based on the reduction of affinity for the ion exchanger QAE-Sephadex as a consequence of the decrease in the negative charge of the cell surface. This characteristic reflects a decrease in the incorporation of mannosylphosphate units into the N-linked oligosaccharides of the mannoproteins. The mutants exhibit low affinity for the basic dye alcian blue and for that reason we have called them Idb (low dye binding) mutants. Eight of the complementation groups seem to be new as shown by complementation studies with previously isolated mutants of similar phenotype. Four of the groups showed a significant reduction in the number and/or size of the N-linked oligosaccharides attached to secreted invertase. We have analyzed the N-linked oligosaccharides of Idb1 and Idb2, the mutants that show the most drastic reduction in the affinity for the alcian blue dye. In both cases, the purified endo H-released oligosaccharides from the mannoproteins lacked detectable amounts of phosphate groups as shown by ion exchange chromatography and the 1H NMR spectra. In addition, Ibd1 synthesizes a truncated and unbranched outer chain lacking any alpha (1,2) linked mannoses attached to the alpha (1,6) linear backbone.  相似文献   

9.
Three glucanase-extractable cell wall proteins from Saccharomyces cerevisiae were purified, and their N-terminal amino acid sequences were determined. With this information, we were able to assign gene products to three known open reading frames (ORFs). The N-terminal sequence of a 55-kDa mannoprotein corresponded with the product of ORF YKL096w, which we named CWP1 (cell wall protein 1). A 80-kDa mannoprotein was identified as the product of the TIP1 gene, and a 180-kDa mannoprotein corresponded to the product of the ORF YKL444, which we named CWP2. CWP1, TIP1, and CWP2 encode proteins of 239, 210, and 92 amino acids, respectively. The C-terminal regions of these proteins all consist for more than 40% of serine/threonine and contain putative glycosylphosphatidylinositol attachment signals. Furthermore, Cwp1p and Tip1p were shown to carry a beta 1,6-glucose-containing side chain. The cwp2 deletion mutant displayed an increased sensitivity to Congo red, calcofluor white, and Zymolyase. Electron microscopic analysis of the cwp2 deletion mutant showed a strongly reduced electron-dense layer on the outside of the cell wall. These results indicate that Cwp2p is a major constituent of the cell wall and plays an important role in stabilizing the cell wall. Depletion of Cwp1p or Tip1p also caused increased sensitivities to Congo red and calcofluor white, but the effects were less pronounced than for cwp2 delta. All three cell wall proteins show a substantial homology with Srp1p, which also appears to be localized in the cell wall. We conclude that these four proteins are small structurally related cell wall proteins.  相似文献   

10.
The antitumor drug bleomycin can produce a variety of lesions in the cellular DNA by a free radical dependent mechanism. To understand how these DNA lesions are repaired, bleomycin-hypersensitive mutants were isolated from the yeast Saccharomyces cerevisiae. We report here the analysis of one mutant, DRY25, that showed extreme sensitivity to bleomycin. This mutant also exhibited hypersensitivity to hydrogen peroxide and t-butyl hydroperoxide, but showed no sensitivity to other DNA-damaging agents, including gamma-rays, ultraviolet light, and methyl methanesulfonate. Subsequent analysis revealed that strain DRY25 was severely deficient in the repair of bleomycin-induced DNA lesions. Under normal growth conditions, DRY25 displayed a 3-fold increase in the frequency of chromosomal translocation that was further stimulated by 5- to 15-fold when the cells were treated with either bleomycin or hydrogen peroxide, but not by methyl methanesulfonate, as compared with the wild type. Genetic analysis indicated that the mutant defect was independent of the nucleotide excision, postreplication, or recombinational DNA-repair pathways. These data suggest that one conceivable defect of DRY25 is that it lacks a protein that protects the cell against oxidative damage to DNA. A clone that fully complemented DRY25 defect was isolated and the possible roles of the complementing gene are discussed.  相似文献   

11.
The potent thrombin inhibitor hirudin variant 1, originally isolated from the leech Hirudo medicinalis, was expressed in Saccharomyces cerevisiae under the control of a truncated glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter fragment. Fusion of the yeast acid phosphatase (PHO5) signal sequence to the hirudin gene led to quantitative secretion of recombinant desulfato-hirudin variant 1 (r-hirudin) into the extracellular medium in a growth-dependent manner. In comparison to the genuine molecule, r-hirudin lacks the sulfate group at the Tyr in position 63. Besides the full-length protein of 65 amino acids (hir65), chemical analysis revealed the presence mainly of two derivatives lacking the last amino acid Gln (hir64) or the penultimate Leu (hir63) in addition. When expressing r-hirudin in mutant strains defective in all but one of the three major known carboxypeptidases, it turned out that the vacuolar carboxypeptidase yscY as well as the alpha-factor precursor-processing carboxypeptidase, ysc alpha, participate in the C-terminal degradation of r-hirudin. Direct involvement of yscY and ysc alpha was confirmed by sequential disruption of their structural genes PRC1 and KEX1, respectively. Disruption of PRA1, coding for the yscY-processing proteinase yscA, also abolished yscY-mediated C-terminal r-hirudin degradation, but clearly reduced the overall expression yield. Since ysc alpha is described to be highly specific for basic amino acids which are not present at the C-terminus of r-hirudin, a series of r-hirudin mutants with changes in the C-terminal amino acids were constructed and analysed for ysc alpha-mediated and yscY-mediated degradation. Chromatographic analysis of the expression products confirmed the preference of ysc alpha for basic amino acids, although Tyr, Leu and Gln were also hydrolysed. It could further be concluded that ysc alpha might also be responsible for the C-terminal degradation of recombinant atrial natriuretic factor and epidermal growth factor expressed in yeast.  相似文献   

12.
Cataract extraction and posterior chamber intraocular lens (PC-IOL) implantation was carried out in 45 glaucoma eyes that had undergone glaucoma filtering surgery (Group A), and in 47 glaucoma eyes in which intraocular pressure (IOP) was well controlled with medication (Group B). To analyze the effects of PC-IOL implantation on the control of IOP and the functioning of the filtering bleb, a life-table analysis using the Kaplan-Meier method was carried out. In Group A the probability that IOP control will not worsen at 2 years was 56 +/- 12 (SE)% in eyes where a functioning filtering bleb had existed preoperatively. The probability that the filtering bleb was not cicatrized at 2 years postoperatively was 44 +/- 11 (SE)%. In Group B the postoperative IOP on the first postoperative day was significantly higher than the preoperative level in primary open angle glaucoma (POAG) eyes, while no such difference was seen in primary angle closure glaucoma (PACG) eyes. The postoperative IOP was significantly lower than the preoperative level from 3 to 6 months postoperatively in POAG eyes and from 1 to 12 months postoperatively in PACG eyes. Medication did not differ significantly pre- and postoperatively. In 64 +/- 11 (SE)% of POAG and 63 +/- 15% of PACG eyes the IOP control did not worsen at 2 years. In 70% of the eyes the IOP control improved postoperatively, and was maintained for 2 years with the probability of 44 +/- 12 (SE)%.  相似文献   

13.
Fragile mutants of Saccharomyces cerevisiae require osmotic stabilizers and lyse in hypotonic solutions. A single recessive mutation, srb1, is responsible for their phenotype, but the cause of cell lysis remains uncertain. We have analyzed three possible mechanisms for this behavior: comparative amounts of wall per cell; their chitin content; and the relative activity of wall hydrolytic enzymes activated by osmotic shock. We found normal amounts of wall and higher amounts of chitin in the fragile mutants. Determination of lytic enzymes by radiolabel of the reducing ends of wall polysaccharides gave results suggesting that fragile mutants produce increased amounts of stretch-activated wall hydrolytic enzymes, which may be responsible for their lysis in hypotonic media. These enzymes normally may play a role in cell wall growth and shaping.  相似文献   

14.
The Saccharomyces cerevisiae ubiquitin-conjugating enzyme (UBC) Rad6 is required for several functions, including the repair of UV damaged DNA, damage-induced mutagenesis, sporulation, and the degradation of cellular proteins that possess destabilizing N-terminal residues. Rad6 mediates its role in N-end rule-dependent protein degradation via interaction with the ubiquitin-protein ligase Ubr1 and in DNA repair via interactions with the DNA binding protein Rad18. We report here the crystal structure of Rad6 refined at 2.6 A resolution to an R factor of 21.3%. The protein adopts an alpha/beta fold that is very similar to other UBC structures. An apparent difference at the functionally important first helix, however, has prompted a reassessment of previously reported structures. The active site cysteine lies in a cleft formed by a coil region that includes the 310 helix and a loop that is in different conformations for the three molecules in the asymmetric unit. Residues important for Rad6 interaction with Ubr1 and Rad18 are on the opposite side of the structure from the active site, indicating that this part of the UBC surface participates in protein-protein interactions that define Rad6 substrate specificity.  相似文献   

15.
Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces rapid inactivation and degradation of the general amino acid permease Gap1 through a process requiring the Npi1/Rsp5 ubiquitin (Ub) ligase. In this study, we show that NH4+ induces endocytosis of Gap1, which is then delivered into the vacuole where it is degraded. This down-regulation is accompanied by increased conversion of Gap1 to ubiquitinated forms. Ubiquitination and subsequent degradation of Gap1 are impaired in the npi1 strain. In this mutant, the amount of Npi1/Rsp5 Ub ligase is reduced >10-fold compared with wild-type cells. The C-terminal tail of Gap1 contains sequences, including a di-leucine motif, which are required for NH4+-induced internalization and degradation of the permease. We show here that mutant Gap1 permeases affected in these sequences still bind Ub. Furthermore, we provide evidence that only a small fraction of Gap1 is modified by Ub after addition of NH4+ to mutants defective in endocytosis.  相似文献   

16.
17.
The linear double stranded DNA plasmid pGKL1 encodes the yeast killer toxin complex (Gunge et al., 1981) of which the killing mechanism is not understood. We isolated and characterized eight mutants in Saccharomyces cerevisiae that were insensitive to both the intracellularly expressed 28-kDa killer subunit and the native killer toxin complex. These mutations (iki1 through iki5) were all recessive, and classified into five complementation groups. The iki2 mutation was mapped to a position near the centromere on chromosome XIII. We developed a novel screening system to isolate the DNA fragments complementing the iki mutations from a Saccharomyces gene library, and isolated three DNA fragments that complement the iki1, iki3, and iki4 mutations, respectively.  相似文献   

18.
Null trk1 trk2 mutants of Saccharomyces cerevisiae exhibit a low-affinity uptake of K+ and Rb+. We show that this low-affinity Rb+ uptake is mediated by several independent transporters, and that trk1Delta cells and especially trk1Delta trk2Delta cells are highly hyperpolarized. Differences in the membrane potentials were assessed for sensitivity to hygromycin B and by flow cytometric analyses of cellular DiOC6(3) fluorescence. On the basis of the latter analyses, it is proposed that Trk1p and Trk2p are involved in the control of the membrane potential, preventing excessive hyperpolarizations. K+ starvation and nitrogen starvation hyperpolarize both TRK1 TRK2 and trk1Delta trk2Delta cells, thus suggesting that other proteins, in addition to Trk1p and Trk2p, participate in the control of the membrane potential. The HAK1 K+ transporter from Schwanniomyces occidentalis suppresses the K+-defective transport of trk1Delta trk2Delta cells but not the high hyperpolarization, and the HKT1 K+ transporter from wheat suppresses both defects, in the presence of Na+. We discuss the mechanism involved in the control of the membrane potential by Trk1p and Trk2p and the causal relationship between the high membrane potential (negative inside) of trk1Delta trk2Delta cells and its ectopic transport of alkali cations.  相似文献   

19.
In response to an external source of adenine, yeast cells repress the expression of purine biosynthesis pathway genes. To identify necessary components of this signalling mechanism, we have isolated mutants that are constitutively active for expression. These mutants were named bra (for bypass of repression by adenine). BRA7 is allelic to FCY2, the gene encoding the purine cytosine permease and BRA9 is ADE12, the gene encoding adenylosuccinate synthetase. BRA6 and BRA1 are new genes encoding, respectively, hypoxanthine guanine phosphoribosyl transferase and adenylosuccinate lyase. These results indicate that uptake and salvage of adenine are important steps in regulating expression of purine biosynthetic genes. We have also shown that two other salvage enzymes, adenine phosphoribosyl transferase and adenine deaminase, are involved in activating the pathway. Finally, using mutant strains affected in AMP kinase or ribonucleotide reductase activities, we have shown that AMP needs to be phosphorylated to ADP to exert its regulatory role while reduction of ADP into dADP by ribonucleotide reductase is not required for adenine repression. Together these data suggest that ADP or a derivative of ADP is the effector molecule in the signal transduction pathway.  相似文献   

20.
Coenzyme Q (ubiquinone or Q) plays a well known electron transport function in the respiratory chain, and recent evidence suggests that the reduced form of ubiquinone (QH2) may play a second role as a potent lipid-soluble antioxidant. To probe the function of QH2 as an antioxidant in vivo, we have made use of a Q-deficient strain of Saccharomyces cerevisiae harboring a deletion in the COQ3 gene [Clarke, C. F., Williams, W. & Teruya, J. H. (1991) J. Biol. Chem. 266, 16636-16644]. Q-deficient yeast and the wild-type parental strain were subjected to treatment with polyunsaturated fatty acids, which are prone to autoxidation and breakdown into toxic products. In this study we find that Q-deficient yeast are hypersensitive to the autoxidation products of linolenic acid and other polyunsaturated fatty acids. In contrast, the monounsaturated oleic acid, which is resistant to autoxidative breakdown, has no effect. The hypersensitivity of the coq3delta strains can be prevented by the presence of the COQ3 gene on a single copy plasmid, indicating that the sensitive phenotype results solely from the inability to produce Q. As a result of polyunsaturated fatty acid treatment, there is a marked elevation of lipid hydroperoxides in the coq3 mutant as compared with either wild-type or respiratory-deficient control strains. The hypersensitivity of the Q-deficient mutant can be rescued by the addition of butylated hydroxytoluene, alpha-tocopherol, or trolox, an aqueous soluble vitamin E analog. The results indicate that autoxidation products of polyunsaturated fatty acids mediate the cell killing and that QH2 plays an important role in vivo in protecting eukaryotic cells from these products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号