首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In C. elegans, the epithelial Pn.p cells adopt either a vulval precursor cell fate or fuse with the surrounding hypodermis (the F fate). Our results suggest that a Wnt signal transduced through a pathway involving the beta-catenin homolog BAR-1 controls whether P3.p through P8.p adopt the vulval precursor cell fate. In bar-1 mutants, P3.p through P8.p can adopt F fates instead of vulval precursor cell fates. The Wnt/bar-1 signaling pathway acts by regulating the expression of the Hox gene lin-39, since bar-1 is required for LIN-39 expression and forced lin-39 expression rescues the bar-1 mutant phenotype. LIN-39 activity is also regulated by the anchor cell signal/let-23 receptor tyrosine kinase/let-60 Ras signaling pathway. Our genetic and molecular experiments show that the vulval precursor cells can integrate the input from the BAR-1 and LET-60 Ras signaling pathways by coordinately regulating activity of the common target LIN-39 Hox.  相似文献   

2.
3.
4.
5.
During induction of the Caenorhabditis elegans hermaphrodite vulva, a signal from the anchor cell activates the LET-23 epidermal growth factor receptor (EGFR)/LET-60 Ras/MPK-1 MAP kinase signaling pathway in the vulval precursor cells. We have characterized two mechanisms that limit the extent of vulval induction. First, we found that gap-1 may directly inhibit the LET-60 Ras signaling pathway. We identified the gap-1 gene in a genetic screen for inhibitors of vulval induction. gap-1 is predicted to encode a protein similar to GTPase-activating proteins that likely functions to inhibit the signaling activity of LET-60 Ras. A loss-of-function mutation in gap-1 suppresses the vulvaless phenotype of mutations in the let-60 ras signaling pathway, but a gap-1 single mutant does not exhibit excess vulval induction. Second, we found that let-23 EGFR prevents vulval induction in a cell-nonautonomous manner, in addition to its cell-autonomous role in activating the let-60 ras/mpk-1 signaling pathway. Using genetic mosaic analysis, we show that let-23 activity in the vulval precursor cell closest to the anchor cell (P6.p) prevents induction of vulval precursor cells further away from the anchor cell (P3.p, P4.p, and P8.p). This result suggests that LET-23 in proximal vulval precursor cells might bind and sequester the inductive signal LIN-3 EGF, thereby preventing diffusion of the inductive signal to distal vulval precursor cells.  相似文献   

6.
In C. elegans, the LET-23 receptor tyrosine kinase is localized to the basolateral membranes of polarized vulval epithelial cells. lin-2, lin-7, and lin-10 are required for basolateral localization of LET-23, since LET-23 is mislocalized to the apical membrane in lin-2, lin-7, and lin-10 mutants. Yeast two-hybrid, in vitro binding, and in vivo coimmunoprecipitation experiments show that LIN-2, LIN-7, and LIN-10 form a protein complex. Furthermore, compensatory mutations in lin-7 and let-23 exhibit allele-specific suppression of apical mislocalization and signaling-defective phenotypes. These results present a mechanism for basolateral localization of LET-23 receptor tyrosine kinase by direct binding to the LIN-2/LIN-7/LIN-10 complex. Each of the binding interactions within this complex is conserved, suggesting that this complex may also mediate basolateral localization in mammals.  相似文献   

7.
During Caenorhabditis elegans vulval induction, multipotent precursors respond to an inductive signal by generating vulval cells as opposed to non-specialized epidermal cells. Both classical and 'reverse' genetic approaches have revealed that a cascade of nematode homologues of mammalian proto-oncogenes is necessary for induction of the vulva. The inductive signal is a growth factor encoded by the lin-3 gene and its candidate receptor is a tyrosine kinase encoded by the let-23 gene. let-23 acts via a Ras protein encoded by the let-60 gene. A nematode homologue of mammalian raf family protein serine/threonine kinases has been cloned and found to be encoded by the lin-45 gene. Dominant negative lin-45 raf mutants prevent vulval induction. A recessive lin-45 raf mutation prevents the excessive vulval differentiation caused by activated ras, indicating that raf might act downstream of ras during vulval induction.  相似文献   

8.
Induction of vulval fates in the C. elegans hermaphrodite is mediated by a signal transduction pathway involving Ras and MAP kinase. Previous genetic analysis has suggested that two potential targets of this pathway in the vulva precursor cells are two novel proteins, LIN-25 and SUR-2. In this report, we describe further studies of lin-25. The results of a genetic mosaic analysis together with those of experiments in which lin-25 was expressed under the control of an heterologous promoter suggest that the major focus of lin-25 during vulva induction is the vulva precursor cells themselves. We have generated antisera to LIN-25 and used these to analyse the pattern of protein expression. LIN-25 is present in all six precursor cells prior to and during vulva induction but later becomes restricted to cells of the vulval lineages. Mutations in genes in the Ras/MAP kinase pathway do not affect the pattern of expression but the accumulation of LIN-25 is reduced in the absence of sur-2. Overexpression of LIN-25 does not rescue sur-2 mutant defects suggesting that LIN-25 and SUR-2 may function together. LIN-25 is also expressed in the lateral hypodermis. Overexpression of LIN-25 disrupts lateral hypodermal cell fusion, suggesting that lin-25 may play a role in regulating cell fusions in C. elegans.  相似文献   

9.
10.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

11.
Presenilins have been implicated in the development of Alzheimer's disease and in facilitating LIN-12/Notch activity. Here, we use genetic methods to explore the relationship between C. elegans LIN-12 and SEL-12 presenilin. Reducing sel-12 activity can suppress the effects of elevated lin-12 activity when LIN-12 is activated by missense mutations but not when LIN-12 is activated by removal of the extracellular and transmembrane domains. These results suggest that SEL-12 does not function downstream of activated LIN-12. An active SEL-12::GFP hybrid protein accumulates in the perinuclear region of the vulval precursor cells (VPCs) of living hermaphrodites, consistent with a localization in endoplasmic reticulum/Golgi membranes; when sel-12 activity is reduced, less LIN-12 protein accumulates in the plasma membranes of the VPCs. Together with the genetic interactions between lin-12 and sel-12, these observations suggest a role for SEL-12 in LIN-12 processing or trafficking. However, SEL-12 does not appear to be a general factor that influences membrane protein activity, since reducing sel-12 activity does not suppress or enhance hypomorphic mutations in other genes encoding membrane proteins. We discuss potential parallels for the role of SEL-12/presenilin in facilitating LIN-12/Notch activity and in amyloid precursor protein (APP) processing.  相似文献   

12.
The Caenorhabditis elegans heterochronic gene lin-14 generates a temporal gradient of the LIN-14 proteins to control stage-specific patterns of cell lineage during development. Down-regulation of LIN-14 is mediated by the lin-14 3' untranslated region (UTR), which bears seven sites that are complementary to the regulatory lin-4 RNA. Here we report molecular and genetic evidence that RNA duplexes between the lin-4 and lin-14 RNAs form in vivo and are necessary for LIN-14 temporal gradient generation. lin-4 RNA binds in vitro to a lin-14 mRNA bearing the seven lin-4 complementary sites but not to a lin-14 mRNA bearing point mutations in these sites. In vivo, the lin-4 complementary regions are necessary for lin-14 3' UTR-mediated temporal gradient formation. Based on lin-14 3' UTR sequence comparisons between C. elegans and C. briggsae, four of the seven lin-4/lin-14 RNA duplexes are predicted to bulge a lin-4 C residue, and three sites are predicted to form nonbulged RNA duplexes. Reporter genes bearing multimerized bulged C lin-4 binding sites show almost wild-type temporal gradient formation, whereas those bearing multimerized nonbulged lin-4 binding sites do not form a temporal gradient. Paradoxically, lin-4 RNA binds in vitro to nonbulged lin-14 RNA more avidly than to the bulged lin-14 RNA. This suggests that a specific secondary structure of lin-4/lin-14 RNA duplex that may be recognized by an accessory protein, rather than an RNA duplex per se, is required in vivo for the generation of the LIN-14 temporal gradient.  相似文献   

13.
In Caenorhabditis elegans, the vulval induction is mediated by tyrosine kinase receptor/Ras signal transduction pathway composed of the lin-3, let-23, and let-60 products. In addition to these gene products, the lin-2, lin-7, and lin-10 products are also implicated in this pathway. Lin-2 encodes a MAGUK and lin-7 encodes a small protein with one PDZ domain. The lin-10 product has no homology to known proteins. Here, we have cloned a rat homologue of the lin-10 product and characterized it. Rat lin-10 is ubiquitously expressed in various rat tissues and distributed in both the cytosol and membrane fractions. In brain, however, rat lin-10 is distributed only in the membrane fraction and enriched in the synaptic plasma membrane and postsynaptic density fractions. These results suggest that rat lin-10 is involved at least in synaptic functions in brain.  相似文献   

14.
Previous work indicated that sel-1 functions as a negative regulator of lin-12 activity, and predicted that SEL-1 is a secreted or membrane associated protein. In this study, we describe cell ablation experiments that suggest sel-1 mutations elevate lin-12 activity cell autonomously. We also use transgenic approaches to demonstrate that the predicted signal sequence of SEL-1 can direct secretion and is important for function, while a C-terminal hydrophobic region is not required for SEL-1 function. In addition, by analyzing SEL-1 localization using specific antisera we find that SEL-1 is localized intracellularly, with a punctate staining pattern suggestive of membrane bound vesicles. We incorporate these observations, and new information about a related yeast gene, into a proposal for a possible mechanism for SEL-1 function in LIN-12 turnover.  相似文献   

15.
Muscle development initiates in the Drosophila embryo with the segregation of single progenitor cells, from which a complete set of myofibres arises. Each progenitor is assigned a unique fate, characterized by the expression of particular identity genes. We now demonstrate that the Drosophila epidermal growth factor receptor provides an inductive signal for the specification of a large subset of muscle progenitors. In the absence of the receptor or its ligand, SPITZ, specific progenitors fail to segregate. The resulting unspecified mesodermal cells undergo programmed cell death. In contrast, receptor hyperactivation generates supernumerary progenitors, as well as the duplication of at least one SPITZ-dependent myofibre. The development of individual muscles is differentially sensitive to variations in the level of signalling by the epidermal growth factor receptor. Such graded myogenic effects can be influenced by alterations in the functions of Star and rhomboid. In addition, muscle patterning is dependent on the generation of a spatially restricted, activating SPITZ signal, a process that may rely on the localized mesodermal expression of RHOMBOID. Thus, the epidermal growth factor receptor contributes both to muscle progenitor specification and to the diversification of muscle identities.  相似文献   

16.
Development of the nematode egg-laying system requires the formation of a connection between the uterine lumen and the developing vulval lumen, thus allowing a passage for eggs and sperm. This relatively simple process serves as a model for certain aspects of organogenesis. Such a connection demands that cells in both tissues become specialized to participate in the connection, and that the specialized cells are brought in register. A single cell, the anchor cell, acts to induce and to organize specialization of the epidermal and uterine epithelia, and registrates these tissues. The inductions act via evolutionarily conserved intercellular signaling pathways. The anchor cell induces the vulva from ventral epithelial cells via the LIN-3 growth factor and LET-23 transmembrane tyrosine kinase. It then induces surrounding uterine intermediate precursors via the receptor LIN-12, a founding member of the Notch family of receptors. Both signaling pathways are used multiple times during development of Caenorhabditis elegans. The outcome of the signaling is context-dependent. Both inductions are reciprocated. After the anchor cell has induced the vulva, it stretches toward the induced vulval cells. After the anchor cell has induced specialized uterine intermediate precursor cells, it fuses with a subset of their progeny.  相似文献   

17.
Ligands of the Delta/Serrate/lag-2 (DSL) family and their receptors, members of the lin-12/Notch family, mediate cell-cell interactions that specify cell fate in invertebrates and vertebrates. In C. elegans, two DSL genes, lag-2 and apx-1, influence different cell fate decisions during development. Here we show that APX-1 can fully substitute for LAG-2 when expressed under the control of lag-2 regulatory sequences. In addition, we demonstrate that truncated forms lacking the transmembrane and intracellular domains of both LAG-2 and APX-1 can also substitute for endogenous lag-2 activity. Moreover, we provide evidence that these truncated forms are secreted and able to activate LIN-12 and GLP-1 ectopically. Finally, we show that expression of a secreted DSL domain alone may enhance endogenous LAG-2 signalling. Our data suggest ways that activated forms of DSL ligands in other systems may be created.  相似文献   

18.
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.  相似文献   

19.
20.
The Drosophila segment polarity gene wingless (wg) is essential for cell fate decisions in the developing embryonic epidermis. Wg protein is produced in one row of cells near the posterior of every segment and is secreted and distributed throughout the segment to generate wild-type pattern elements. Ventrally, epidermal cells secrete a diverse array of anterior denticle types and a posterior expanse of naked cuticle; dorsally, a stereotyped pattern of fine hairs is secreted. We describe three new wg alleles that promote naked cuticle cell fate but show reduced denticle diversity and dorsal patterning. These mutations cause single amino acid substitutions in a cluster of residues that are highly conserved throughout the Wnt family. By manipulating expression of transgenic proteins, we demonstrate that all three mutant molecules retain the intrinsic capacity to signal ventrally but fail to be distributed across the segment. Thus, movement of Wg protein through the epidermal epithelium is essential for proper ventral denticle specification and this planar movement is distinct from the apical-basal transcytosis previously described in polarized epithelia. Furthermore, ectopic overexpression of the mutant proteins fails to rescue dorsal pattern elements. Thus we have identified a region of Wingless that is required for both the transcytotic process and signal transduction in dorsal cell populations, revealing an unexpected link between these two aspects of Wg function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号